在△ABC中,∠C=90°,則sin(A-B)+cos2A=
 
考點:二倍角的余弦,兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:根據(jù)三角形中,A,B,C的關(guān)系,結(jié)合誘導(dǎo)公式化簡即可.
解答: 解:∵C=90°,
∴A+B=90°,
即B=90°-A,
則sin(A-B)+cos2A=sin(A-90°+A)+cos2A=sin(2A-90°)+cos2A=-cos2A+cos2A=0,
故答案為:0
點評:本題主要考查三角函數(shù)值的化簡和求值,利用誘導(dǎo)公式是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項公式an=2n+1,求{
1
anan+1
}前n項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)+
1
0
f(x)
dx=x,則f(
1
4
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x+
4
x-1
(x>1)的最小值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式f(x)=ax2-x-c>0的解集為{x|-2<x<1},則函數(shù)y=f(-x)的圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某農(nóng)場計劃種植甲、乙兩個品種的蔬菜,總面積不超過300畝,總成本不超過9萬元.甲、乙兩種蔬菜的成本分別是每畝600元和每畝200元.假設(shè)種植這兩個品種的蔬菜,能為該農(nóng)場帶來的收益分別為每畝0.3萬元和每畝0.2萬元.問該農(nóng)場如何分配甲、乙兩種蔬菜的種植面積,可使農(nóng)場的總收益最大,最大收益是多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是首項為1的等比數(shù)列,設(shè)bn=an+2n,若數(shù)列{bn}也是等比數(shù)列,則b1+b2+b3=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x、y滿足約束條件
y≤1
x+y≥0
x-y-2≤0

(1)作出不等式組所表示的平面區(qū)域,并求目標函數(shù)z=x-2y的最大值;
(2)求目標函數(shù)z=
y+2
x+2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α∈(0,
π
4
),a=logα
1
sinα
,b=αsinα,c=αcosα,則( 。
A、c>a>b
B、b>a>c
C、a>c>b
D、b>c>a

查看答案和解析>>

同步練習(xí)冊答案