在△ABC中,AB=
3
,AC=1,∠A=30°,則△ABC面積為( 。
A、
3
2
B、
3
4
C、
3
2
3
D、
3
4
3
2
考點:正弦定理
專題:解三角形
分析:根據(jù)題意和三角形的面積公式直接求出△ABC面積.
解答: 解:因為AB=
3
,AC=1,∠A=30°,
則△ABC面積為S=
1
2
•AB•AC•sinA
=
1
2
×
3
×1×
1
2
=
3
4
,
故選:B.
點評:本題考查正弦定理中的三角形的面積公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=-
1
4
,an+1=1-
1
an
,則a2009=(  )
A、
4
5
B、5
C、-
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M、N分別為PA、BC的中點,且PD=AD=1,
(1)求證:MN∥平面PCD;
(2)求證:平面PAC⊥平面PBD;
(3)求三棱錐P-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xe-x(x∈R)
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間及極值;
(Ⅱ)求證:當(dāng)x>1時,f(x)>f(2-x);
(Ⅲ)如果x1≠x2,且f(x1)=f(x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:kx+(1-k)y-3=0經(jīng)過的定點是(  )
A、(0,1)
B、(3,3)
C、(1,-3)
D、(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖在四邊形ABCD中,AC⊥DC,△ADC的面積為30cm2,DC=12cm,AB=3cm,BC=4cm求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P(1,2)和圓C:x2+y2+2kx+2y+k2=0上的點距離的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=1+i.
(1)設(shè)ω=z2+3(1-i)-4,求|ω|;
(2)若z2+az+b-1=1-i,求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={m|(m-2)(m2+1)>0}; 集合B={m|f(x)=log2[4x2+4(m-2)x+1]的定義域為R}.
(1)若集合C⊆A∩B且C=[m,m+
1
2
],求m的取值范圍;
(2)設(shè)全集U={m|m>
3
2
},求A∩∁UB.

查看答案和解析>>

同步練習(xí)冊答案