【題目】在平面直角坐標系中,設橢圓的左焦點為,左準線為為橢圓上任意一點,直線,垂足為,直線與交于點.
(1)若,且,直線的方程為.①求橢圓的方程;②是否存在點,使得?若存在,求出點的坐標;若不存在,說明理由.
(2)設直線與圓交于兩點,求證:直線均與圓相切.
【答案】(1)①;②不存在;(2)證明見解析.
【解析】
(1)①根據(jù)左準線方程求出參數(shù)a,從而得出橢圓方程;
②設出,根據(jù)點在橢圓上且得出關于的方程組,根據(jù)解的情況,得出結果;
(2)設點,,根據(jù),求出,對進行轉化,借助在圓上,進而得出結果.
解:(1)①因為直線的方程為,
所以
因為,
所以,解得或
因為,
所以,,
橢圓方程為.
②設,則,即,
當或時,均不符合題意;
當或時,直線的斜率為,
直線的方程為,
故直線的方程為,
聯(lián)立方程組,解得,
所以,
因為,
故,
即或
方程的根為,
因為,故無解;
方程的,故無解,
綜上:不存在點P使.
(2)設,
則,,
因為,
所以,
即,
由題意得,所以,
所以
因為,
所以
因為在圓上,所以,即,
故,
所以,
所以直線與圓相切,
同理可證:與圓相切.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,三棱錐中,平面平面,平面平面,分別是和邊上的點,且,,,,,,為的中點.
(1)求證:平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在五棱錐P-ABCDE中,△ABE是等邊三角形,四邊形BCDE是直角梯形且∠DEB=∠CBE=90°,G是CD的中點,點P在底面的射影落在線段AG上.
(Ⅰ)求證:平面PBE⊥平面APG;
(Ⅱ)已知AB=2,BC=,側棱PA與底面ABCDE所成角為45°,S△PBE=,點M在側棱PC上,CM=2MP,求二面角M-AB-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2017年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如表:
組號 | 分組 | 頻率 |
第1組 | ||
第2組 | ||
第3組 | ||
第4組 | ||
第5組 |
求出頻率分布表中處應填寫的數(shù)據(jù),并完成如圖所示的頻率分布直方圖;
根據(jù)直方圖估計這次自主招生考試筆試成績的平均數(shù)和中位數(shù)結果都保留兩位小數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知棱,,兩兩垂直,長度分別為1,2,2.若(),且向量與夾角的余弦值為.
(1)求的值;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓經(jīng)過點.離心率.
(1)求橢圓C的標準方程;
(2)若M,N分別是橢圓長軸的左、右端點,動點D滿足,連接MD交橢圓于點Q.問:x軸上是否存在異于點M的定點G,使得以QD為直徑的圓恒過直線QN,GD的交點?若存在,求出點G的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在①離心率,②橢圓過點,③面積的最大值為,這三個條件中任選一個,補充在下面(橫線處)問題中,解決下面兩個問題.
設橢圓的左、右焦點分別為,過且斜率為的直線交橢圓于兩點,已知橢圓的短軸長為,________.
(1)求橢圓的方程;
(2)若線段的中垂線與軸交于點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面內(nèi)一動點()到點的距離與點到軸的距離的差等于1,
(1)求動點的軌跡的方程;
(2)過點的直線與軌跡相交于不同于坐標原點的兩點,求面積的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com