三棱錐的底面是兩條直角邊長分別為6cm和8cm的直角三角形,各側(cè)面與底面所成的角都是60°,則三棱錐的高為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式cm
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式cm
C
分析:先根據(jù)題意畫出示意圖,再利用側(cè)面與底面所成的角都是60°可知點P在底面的投影是直角三角形的內(nèi)心,結(jié)合直角三角形的邊的關(guān)系即可求得三棱錐的高.
解答:如圖,設(shè)三棱錐的頂點P在底面上的射影為D,
∵各側(cè)面與底面所成的角都是60°
∴點P在底面的投影是直角三角形的內(nèi)心,
作DF⊥BC,則DF=2,∠PFD=60°
∴PD=
故選C.
點評:本題主要考查了棱錐的結(jié)構(gòu)特征,以及空間中線段之間的數(shù)量關(guān)系,考查空間想象能力、運算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

10、下列命題中,正確命題的序號為
④⑤

①經(jīng)過空間任意一點都可作唯一一個平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
⑤三棱錐的四個面可以都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;
②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆江西省高三第四次月考理科數(shù)學試卷(解析版) 題型:填空題

給出下列命題:

①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;③已知平面,直線,若,,則;④四個側(cè)面兩兩全等的四棱柱為直四棱柱;⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.其中正確命題的序號是      

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列命題中,正確命題的序號為______.
①經(jīng)過空間任意一點都可作唯一一個平面與兩條已知異面直線都平行;
②已知平面α,直線a和直線b,且a∩α=a,b⊥a,則b⊥α;
③有兩個側(cè)面都垂直于底面的四棱柱為直四棱柱;
④三棱錐中若有兩組對棱互相垂直,則第三組對棱也一定互相垂直;
⑤三棱錐的四個面可以都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省南昌二中高三(上)第四次月考數(shù)學試卷(理科)(解析版) 題型:填空題

給出下列命題:
①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;
②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是   

查看答案和解析>>

同步練習冊答案