【題目】如圖,在四棱錐P﹣ABCD中,側(cè)面PAB⊥底面ABCD,△PAB為正三角形.AB⊥AD,CD⊥AD,點(diǎn)E、M為線段BC、AD的中點(diǎn),F(xiàn),G分別為線段PA,AE上一點(diǎn),且AB=AD=2,PF=2FA.
(1)確定點(diǎn)G的位置,使得FG∥平面PCD;
(2)試問:直線CD上是否存在一點(diǎn)Q,使得平面PAB與平面PMQ所成銳二面角的大小為30°,若存在,求DQ的長(zhǎng);若不存在,請(qǐng)說明理由.
【答案】
(1)解:在AD上取AN= AD,過N作NG∥DC,交AE于G,連結(jié)FG,F(xiàn)N,
∵PF=2FA.可得FA= PA,所以FN∥PD,又NG∥DC,F(xiàn)N∩NG=N,PD∩DC=D,
可得平面FNG∥平面PCD,F(xiàn)G平面FNG,所以FG∥平面PCD
(2)解:作PO⊥AB于O,BA所在直線為x軸,OP所在直線為z軸,在平面ABCD內(nèi)作AB的垂線為y軸,如圖:平面PAB的法向量為: =(0,1,0),
A(1,0,0),Q(λ,2,0),M(1,1,0),P(0,0, ),
則 =(﹣1,﹣1, ), =(λ﹣1,1,0),
設(shè)平面PMQ的法向量為: =(x,y,z),
由 ,可得: ,令x=1,則y=1﹣λ,z= ,
平面PAB與平面PMQ所成銳二面角的大小為30°,
可得:cos30°= = = ,
解得λ=3或 .
此時(shí)DQ=2在CD的延長(zhǎng)線上,或DQ= 在CD線段上.
【解析】(1)在AD上取AN= AD,過N作NG∥DC,交AE于G,連結(jié)FG,F(xiàn)N,利用平面與平面平行的判定定理證明平面FNG∥平面PCD,推出FG∥平面PCD.(2)作PO⊥AB于O,BA所在直線為x軸,OP所在直線為z軸,在平面ABCD內(nèi)作AB的垂線為y軸,求出平面PAB的法向量,平面PMQ的法向量,利用平面PAB與平面PMQ所成銳二面角的大小為30°,求解得λ推出CD的大。
【考點(diǎn)精析】本題主要考查了直線與平面平行的判定的相關(guān)知識(shí)點(diǎn),需要掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)若對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求整數(shù)的值,使函數(shù)在區(qū)間上有零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,其中t∈Z,該程序運(yùn)行后輸出的k=2,則t的最大值為( )
A.11
B.2057
C.2058
D.2059
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某設(shè)備的使用年數(shù)x與所支出的維修總費(fèi)用y的統(tǒng)計(jì)數(shù)據(jù)如下表:
使用年數(shù)x(單位:年) | 2 | 3 | 4 | 5 | 6 |
維修費(fèi)用y(單位:萬元) | 1.5 | 4.5 | 5.5 | 6.5 | 7.0 |
根據(jù)上標(biāo)可得回歸直線方程為 =1.3x+ ,若該設(shè)備維修總費(fèi)用超過12萬元,據(jù)此模型預(yù)測(cè)該設(shè)備最多可使用年.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中,正確的命題有__________.
①回歸直線恒過樣本點(diǎn)的中心,且至少過一個(gè)樣本點(diǎn);
②將一組數(shù)據(jù)的每個(gè)數(shù)據(jù)都加一個(gè)相同的常數(shù)后,方差不變;
③用相關(guān)指數(shù)來刻面回歸效果;表示預(yù)報(bào)變量對(duì)解釋變量變化的貢獻(xiàn)率,越接近于1,說明模型的擬合效果越好;
④若分類變量和的隨機(jī)變量的觀測(cè)值越大,則“與相關(guān)”的可信程度越小;
⑤.對(duì)于自變量和因變量,當(dāng)取值一定時(shí), 的取值具有一定的隨機(jī)性, , 間的這種非確定關(guān)系叫做函數(shù)關(guān)系;
⑥.殘差圖中殘差點(diǎn)比較均勻的地落在水平的帶狀區(qū)域中,說明選用的模型比較合適;
⑦.兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的方程為y=3+ .
(1)寫出曲線C的一個(gè)參數(shù)方程;
(2)在曲線C上取一點(diǎn)P,過點(diǎn)P作x軸,y軸的垂線,垂足分別為A,B,求矩形OAPB的周長(zhǎng)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點(diǎn).
(1)求證:DB1⊥平面ABD;
(2)求二面角A﹣B1D﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=2, (n∈N*).
(1)證明數(shù)列 是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,若數(shù)列{bn}的前n項(xiàng)和是Tn , 求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com