【題目】已知函數(shù).

1時,求上的單調(diào)區(qū)間;

2, 均恒成立,求實(shí)數(shù)的取值范圍.

【答案】(1) 的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;(2) .

【解析】試題分析:(1)求出,令內(nèi)求得 的范圍,可得函數(shù)增區(qū)間,令內(nèi)求得 的范圍,可得函數(shù)的減區(qū)間;(2 時, ,即; 時, ,即, 設(shè),分兩種情況研究函數(shù)的單調(diào)性,并求出的最值,從而可得實(shí)數(shù)的取值范圍.

試題解析:1, ,設(shè),

當(dāng), 上是單調(diào)遞減函數(shù),即則上是單調(diào)遞減函數(shù),

時, 時,

的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是;

2 時, ,;

,;

設(shè)

,, 上單調(diào)遞增

時, , 符合題意;

時, 時, 上單調(diào)遞減,

∴當(dāng)時, ,時, 矛盾;舍

時,設(shè)0中的最大值,當(dāng)時, ,

上單調(diào)遞減,當(dāng)時, 時, 矛盾;舍

綜上,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形為平行四邊形,  平面,且的中點(diǎn).

1)求證: 平面

2)求二面角的余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如下圖所示,為抑制房價過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù): , ;

回歸方程中斜率和截距的最小二乘法估計公式分別為:

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1),上的單調(diào)區(qū)間;

(2), 均恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,即,若,則稱上封閉.

1)分別判斷函數(shù) 上是否封閉,說明理由;

2)函數(shù)的定義域?yàn)?/span>,且存在反函數(shù),若函數(shù)上封閉,且函數(shù)上也封閉,求實(shí)數(shù)的取值范圍;

3)已知函數(shù)的定義域?yàn)?/span>,對任意,若,有恒成立,則稱上是單射,已知函數(shù)上封閉且單射,并且滿足 ,其中),,證明:存在的真子集,

,使得在所有)上封閉.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

當(dāng)時,求曲線處的切線方程;

(Ⅱ)求函數(shù)上的最小值;

(Ⅲ)若函數(shù),當(dāng)時, 的最大值為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

1若關(guān)于的方程上恒成立,求的值;

2)證明:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),直線的參數(shù)方程為為參數(shù)),設(shè)的交點(diǎn)為,當(dāng)變化時, 的軌跡為曲線.

(1)寫出的普遍方程及參數(shù)方程;

(2)以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,設(shè)曲線的極坐標(biāo)方程為, 為曲線上的動點(diǎn),求點(diǎn)的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案