12.已知2a=3,3b=8,則ab=3.

分析 根據(jù)對(duì)數(shù)的定義和換底公式計(jì)算即可.

解答 解:2a=3,3b=8,
∴a=log23,b=log38,
∴ab=log23•log38=$\frac{lg3}{lg2}•\frac{3lg2}{lg3}$=3,
故答案為:3.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的定義和換底公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)y=3sin(x-$\frac{π}{5}$)的圖象為C,把C上所有的點(diǎn)縱坐標(biāo)不變橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,得到的函數(shù)解析式為y=3sin($\frac{1}{2}$x-$\frac{π}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等邊△ABC中,D、E分別是CA、CB的中點(diǎn),以A、B為焦點(diǎn)且過(guò)D、E的橢圓和雙曲線的離心率分別為e1、e2,則下列關(guān)于e1、e2的關(guān)系式不正確的是( 。
A.e1+e2=2$\sqrt{3}$B.e1-e2=2C.e1e2=2D.$\frac{e_2}{e_1}>2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下面是高考第一批錄取的一份志愿表:
志   愿學(xué)    校專   業(yè)
第一志愿1第1專業(yè)第2專業(yè)
第二志愿2第1專業(yè)第2專業(yè)
第三志愿3第1專業(yè)第2專業(yè)
現(xiàn)有4所重點(diǎn)院校,每所院校有3 個(gè)專業(yè)是你較為滿意的選擇,如果表格填滿且規(guī)定學(xué)校沒(méi)有重復(fù),同一學(xué)校的專業(yè)也沒(méi)有重復(fù)的話,學(xué)校錄取是按先一再二最后三志愿的順序,專業(yè)是先錄取第一專業(yè),再第二專業(yè)的原則.你將有不同的填寫方法的種數(shù)是( 。
A.43•(A323B.43•(C323C.A43•(C323D.A43•(A323

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若函數(shù)f(x)=4x2-kx-8在[5,8]上是單調(diào)減函數(shù),則k的取值范圍是[64,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.(Ⅰ)計(jì)算:cos(-$\frac{17π}{6}$);
(Ⅱ)已知tanα=2,求$\frac{3sinα-cosα}{2cosα+sinα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出以下四個(gè)說(shuō)法:
①繪制頻率分布直方圖時(shí),各小長(zhǎng)方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時(shí),R2的值越大,說(shuō)明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則P(ξ>4)=$\frac{1}{2}$;
④對(duì)分類變量X與Y,若它們的隨機(jī)變量K2的觀測(cè)值k越小,則判斷“X與Y有關(guān)系”的犯錯(cuò)誤的概率越小.
其中正確的說(shuō)法是( 。
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.不等式$\frac{{{x^2}(x+1)}}{{-{x^2}-5x+6}}$≤0的解集為(  )
A.{x|-6<x≤-1或x>1}B.{x|-6<x≤-1或x=0或x>1}
C.{x|x<-6或-1≤x<1}D.{x|x<-6或-1≤x<1且x≠0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.函數(shù)f(x)=$\frac{1}{\sqrt{1-(lo{g}_{\frac{1}{2}}x)^{2}}}$的定義域?yàn)椋ā 。?table class="qanwser">A.($\frac{1}{2}$,2)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(2,+∞)D.(0,$\frac{1}{2}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案