8.橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的離心率為( 。
A.$\frac{\sqrt{7}}{4}$B.$\frac{\sqrt{7}}{3}$C.$\frac{1}{4}$D.$\frac{4}{5}$

分析 由橢圓方程求得a,b,結(jié)合隱含條件求得c,則橢圓離心率可求.

解答 解:由$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,得
a2=16,b2=9,
∴a=4,$c=\sqrt{{a}^{2}-^{2}}=\sqrt{7}$,
則e=$\frac{c}{a}=\frac{\sqrt{7}}{4}$.
故選:A.

點評 本題考查橢圓的簡單性質(zhì),是基礎的計算題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”.則下列命題中:
①若C點在線段AB上,則有d(A,C)+d(C,B)=d(A,B).
②若點A,B,C是三角形的三個頂點,則有d(A,C)+d(C,B)>d(A,B).
③到M(-1,0),N(1,0)兩點的“折線距離”相等的點的軌跡是直線x=0.
④若A為坐標原點,B在直線x+y-2$\sqrt{5}$=0上,則d(A,B)的最小值為2$\sqrt{5}$.
真命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知數(shù)列{an}的前m(m≥4)項是公差為2的等差數(shù)列,從第m-1項起,am-1,am,am+1,…成公比為2的等比數(shù)列.若a1=-2,則m=4,{an}的前6項和S6=28.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△BC'D,使得平面BC'D⊥平面ABD.
(1)求證:C′D⊥平面ABD;
(2)求二面角D-BE-C′的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(-1,1),則2$\overrightarrow{a}$+$\overrightarrow$的坐標為(  )
A.(1,5)B.(-1,4)C.(0,3)D.(2,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.為了得到函數(shù)y=sin(2x-$\frac{π}{5}$),x∈R的圖象,只需將函數(shù)y=sin2x,x∈R的圖象上所有的點( 。
A.向左平行移動$\frac{π}{5}$個單位長度B.向右平行移動$\frac{π}{5}$個單位長度
C.向左平行移動$\frac{π}{10}$個單位長度D.向右平行移動$\frac{π}{10}$個單位長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=$\sqrt{10}$,$\overrightarrow$=(-2,1),$\overrightarrow{a}$•$\overrightarrow$=5,則$\overrightarrow{a}$與$\overrightarrow$的夾角為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.某工廠生產(chǎn)某種產(chǎn)品,用傳送帶將產(chǎn)品送至下一工序,質(zhì)量員每隔10分鐘在傳送帶某一位置取一件產(chǎn)品進行檢驗,這種抽樣的方法為(  )
A.分層抽樣B.簡單隨機抽樣C.系統(tǒng)抽樣D.其它抽樣方式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$,若方程f(x)-ax=0恰有兩個不同的根,則實數(shù)a的取值范圍是( 。
A.(0,$\frac{1}{3}$)B.[$\frac{1}{3}$,$\frac{1}{e}$)C.($\frac{1}{e}$,$\frac{4}{3}$]D.(-∞,0]∪[$\frac{4}{3}$,+∞)

查看答案和解析>>

同步練習冊答案