【題目】設(shè)

(1)求上的最大值和最小值;

(2)把的圖像上的所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再把得到的圖像向左平移個單位長度,得到函數(shù)的圖像,求的單調(diào)減區(qū)間

【答案】(1)最大值4;最小值.(2)

【解析】

(1)利用三角函數(shù)的單調(diào)性與值域即可得出.

(2)利用坐標(biāo)變換得到的圖象.可得.再利用三角函數(shù)的單調(diào)性即可得出.

(1)fx)=4sin(2x

x∈[0,],∴

sin(2x)=1時,fx)取得最大值4;sin(2x時,函數(shù)fx)取得最小值

(2)把yfx)的圖象上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),得到的圖象.

再把得到的圖象向左平移個單位,得到的圖象.

gx)的單調(diào)減區(qū)間是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于x的方程在區(qū)間上有兩個不同的解,

①求a的取值范圍;

②若,求的取值范圍;

(2)設(shè)函數(shù)在區(qū)間上的最小值,求的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}的前n項(xiàng)和為Sn,若S3=15,且a3+1為a1+1和a7+1的等比中項(xiàng).

(1)求數(shù)列{an}的通項(xiàng)公式與前n項(xiàng)和Sn

(2)設(shè)Tn為數(shù)列{}的前n項(xiàng)和,問是否存在常數(shù)m,使Tn=m[],若存在,求m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.兩條相交直線在同一平面內(nèi)的射影必為相交直線

B.不共線三點(diǎn)到平面的距離相等,則這三點(diǎn)確定的平面不一定與平面平行

C.對確定的兩異面直線,過空間任一點(diǎn)有且只有一個平面與兩異面直線都平行

D.兩個相交平面的交線是一條線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓C:的右準(zhǔn)線方程為x=2,且兩焦點(diǎn)與短軸的一個頂點(diǎn)構(gòu)成等腰直角三角形

(1)求橢圓C的方程;

(2)假設(shè)直線l與橢圓C交于A,B兩點(diǎn)①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長交橢圓CN,并且,OB的長;②若原點(diǎn)O到直線l的距離為1,并且,當(dāng)時,求△OAB的面積S的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)我們所處的北半球?yàn)槎镜臅r候,新西蘭的惠靈頓市恰好是盛夏,因此北半球的人們冬天愿意去那里旅游,下面是一份惠靈頓機(jī)場提供的月平均氣溫統(tǒng)計表.

(月份)

1

2

3

4

5

6

7

8

9

10

11

12

17.3

17.9

17.3

15.8

13.7

11.6

10.06

9.5

10.06

11.6

13.7

15.8

1)根據(jù)這個統(tǒng)計表提供的數(shù)據(jù),為惠靈頓市的月平均氣溫作出一個函數(shù)模型;

2)當(dāng)自然氣溫不低于13.7℃時,惠靈頓市最適宜旅游,試根據(jù)你所確定的函數(shù)模型,確定惠靈頓市的最佳旅游時間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市有,兩家乒乓球俱樂部,兩家的設(shè)備和服務(wù)都很好,但收費(fèi)標(biāo)準(zhǔn)不同,俱樂部每張球臺每小時5元,俱樂部按月收費(fèi),一個月中以內(nèi)(含)每張球臺90元,超過的部分每張球臺每小時加收2元.某學(xué)校準(zhǔn)備下個月從這兩家中的一家租一張球臺開展活動,其活動時間不少于,也不超過

1)設(shè)在俱樂部租一-張球臺開展活動的收費(fèi)為,在俱樂部租一張球臺開展活動的收費(fèi)為,試求的解析式;

2)問選擇哪家俱樂部比較合算?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).

(1)求證:平面PAC平面PBC;

(2)AB2,AC1,PA1,求二面角CPBA的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題:

①命題“若,則方程無實(shí)根”的否命題;

②命題“在中,,那么為等邊三角形”的逆命題;

③命題“若,則”的逆否命題;

④“若,則的解集為”的逆命題;

其中真命題的序號為(

A.①②③④B.①②④C.②④D.①②③

查看答案和解析>>

同步練習(xí)冊答案