已知函數(shù),若函數(shù)圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的軌跡恰好是函數(shù)的圖象.
(1)寫出函數(shù)的解析式;
(2)當(dāng)時(shí)總有成立,求的取值范圍.
(1)
(2)
解析試題分析:解:(1)根據(jù)題意,由于函數(shù),若函數(shù)圖象上任意一點(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的軌跡恰好是函數(shù)的圖象.利用對(duì)稱性可知設(shè)所求的點(diǎn)(x,y),關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(-x,-y)在已知的上,代入得到為
; 2分
總有
恒成立
令在上為增函數(shù)
時(shí),.
考點(diǎn):函數(shù)解析式以及不等式
點(diǎn)評(píng):主要是考查了函數(shù)解析式的求解,以及不等式的恒成立問題的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)
(1)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)時(shí),求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(是不為零的實(shí)數(shù),為自然對(duì)數(shù)的底數(shù)).
(1)若曲線與有公共點(diǎn),且在它們的某一公共點(diǎn)處有共同的切線,求k的值;
(2)若函數(shù)在區(qū)間內(nèi)單調(diào)遞減,求此時(shí)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)請(qǐng)寫出函數(shù)在每段區(qū)間上的解析式,并在圖中的直角坐標(biāo)系中作出函數(shù)的圖象;
(II)若不等式對(duì)任意的實(shí)數(shù)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義在上的函數(shù),滿足當(dāng)時(shí), ,且對(duì)任意,有,
(1)解不等式
(2)解方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)設(shè)函數(shù).若至少存在一個(gè),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)f(x)=x2+x-.
(I)若定義域?yàn)閇0,3],求f(x)的值域;
(II)若f(x)的值域?yàn)閇-,],且定義域?yàn)閇a,b],求b-a的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(I)當(dāng)a=3時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(II)對(duì)任意b>0,f(x)在區(qū)間[b-lnb,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com