【題目】某單位共有10名員工,他們某年的收入如下表:
員工編號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
年薪(萬元) | 4 | 4.5 | 6 | 5 | 6.5 | 7.5 | 8 | 8.5 | 9 | 51 |
(1)求該單位員工當年年薪的平均值和中位數;
(2)已知員工年薪收入與工作年限成正相關關系,某員工工作第一年至第四年的年薪分別為4萬元、5.5萬元、6萬元、8.5萬元,預測該員工第六年的年薪為多少?
附:線性回歸方程中系數計算公式分別為:,,其中、為樣本均值.
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)當時,求函數的單調區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個值,使得函數有三個不同零點(只需直接寫出數值)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】偶函數f(x)(x∈R)滿足:f(﹣4)=f(1)=0,且在區(qū)間[0,3]與[3,+∞)上分別遞減和遞增,則不等式x3f(x)<0的解集為( )
A.(﹣∞,﹣4)∪(4,+∞)
B.(﹣4,﹣1)∪(1,4)
C.(﹣∞,﹣4)∪(﹣1,0)
D.(﹣∞,﹣4)∪(﹣1,0)∪(1,4)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線l的極坐標方程為ρcosθ+ρsinθ=1,曲線C的極坐標方程為ρsin2θ=8cosθ.
(1)求直線l與曲線C的直角坐標方程;
(2)設點M(0,1),直線l與曲線C交于不同的兩點P,Q,求|MP|+|MQ|的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年世界海洋日暨全國海洋宣傳日主場活動在海南三亞舉行,此次活動主題為“珍惜海洋資源保護海洋生物多樣性”,旨在進一步提高公眾對節(jié)約利用海洋資源.保護海洋生物多樣性的認識,為保護藍色家園做出貢獻.聯合國于第63屆聯合國大會上將每年的6月8日確定為“世界海洋日”,為了響應世界海洋日的活動,2019年12月北京某高校行政主管部門從該大學隨機抽取部分大學生進行一次海洋知識測試,并根據被測驗學生的成績(得分都在區(qū)間內)繪制成如圖所示的頻率分布直方圖.
若學生的得分成績不低于80分的認為是“成績優(yōu)秀”現在從認為“成績優(yōu)秀”的學生中根據原有分組按照分層抽樣的方法抽取10人進行獎勵,最后再從這10人中隨機選取3人作為優(yōu)秀代表發(fā)言.
(1)求所抽取的3人不屬于同一組的概率;
(2)記這3人中,為測試成績在內的人數,求的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.現有如下兩種圖象變換方案:
方案1:將函數的圖像上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變,再將所得圖象向左平移個單位長度;
方案2:將函數的圖象向左平移個單位長度,再將所得圖象上所有點的橫坐標變?yōu)樵瓉淼囊话,縱坐標不變.
請你從中選擇一種方案,確定在此方案下所得函數的解析式,并解決如下問題:
(1)畫出函數在長度為一個周期的閉區(qū)間上的圖象;
(2)請你研究函數的定義域,值域,周期性,奇偶性以及單調性,并寫出你的結論.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com