(2012四川理)某居民小區(qū)有兩個(gè)相互獨(dú)立的安全防范系統(tǒng)(簡(jiǎn)稱系統(tǒng)),系統(tǒng)在任意時(shí)刻發(fā)生故障的概率分別為.

(Ⅰ)若在任意時(shí)刻至少有一個(gè)系統(tǒng)不發(fā)生故障的概率為,求的值;

(Ⅱ)設(shè)系統(tǒng)在3次相互獨(dú)立的檢測(cè)中不發(fā)生故障的次數(shù)為隨機(jī)變量,求的概率分布列及數(shù)學(xué)期望.

[解析](1)設(shè):“至少有一個(gè)系統(tǒng)不發(fā)生故障”為事件C,那么

1-P(C)=1-P=  ,解得P=4 分  

(2)由題意,P(=0)=

P(=1)=

P(=2)=

P(=3)=

所以,隨機(jī)變量的概率分布列為:

0

1

2

3

       

P

故隨機(jī)變量X的數(shù)學(xué)期望為:

E=0 .

[點(diǎn)評(píng)]本小題主要考查相互獨(dú)立事件,獨(dú)立重復(fù)試驗(yàn)、互斥事件、隨機(jī)變量的分布列、數(shù)學(xué)期望等概念及相關(guān)計(jì)算,考查運(yùn)用概率知識(shí)與方法解決實(shí)際問(wèn)題的能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012年高考(四川理))某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗、原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是(  )

A.1800元    B.2400元    C.2800元    D.3100元

查看答案和解析>>

同步練習(xí)冊(cè)答案