分析 建立坐標(biāo)系,因?yàn)閨PB|=|PC|,所以點(diǎn)P在線段BC的垂直平分線上,寫出中垂線的方程,又|PB|-|PA|=4,故P在以A、B為焦點(diǎn)的雙曲線右支上,寫出雙曲線方程,將這兩個(gè)方程聯(lián)立方程組,解出交點(diǎn)P的坐標(biāo),由PA斜率計(jì)算炮擊的方位角.
解答 解:如圖,以直線BA為x軸,線段BA的中垂線為y軸建立坐標(biāo)系,則
B(-3,0)、A(3,0)、C(-5,2$\sqrt{3}$),
因?yàn)閨PB|=|PC|,
所以點(diǎn)P在線段BC的垂直平分線上
因?yàn)閗BC=-$\sqrt{3}$,BC中點(diǎn)D(-4,$\sqrt{3}$),
所以直線PD的方程為y-$\sqrt{3}$=$\frac{1}{{\sqrt{3}}}$(x+4)①
又|PB|-|PA|=4,故P在以A、B為焦點(diǎn)的雙曲線右支上
設(shè)P(x,y),則雙曲線方程為$\frac{x^2}{4}$-$\frac{y^2}{5}$=1(x≥0)②
聯(lián)立①②,得x=8,y=5$\sqrt{3}$,所以P(8,5$\sqrt{3}$),因此kPA=$\frac{{5\sqrt{3}}}{8-3}$=$\sqrt{3}$,
故炮擊的方位角為北偏東30°.
故答案為:北;東;30.
點(diǎn)評 本題主要考查了雙曲線方程的應(yīng)用、解三角形的實(shí)際應(yīng)用.要充分利用三角形的邊角關(guān)系,利用三角函數(shù)、正弦定理、余弦定理等公式找到問題解決的途徑.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
x | -1 | 0 | 4 | 5 |
f(x) | -1 | 2 | 2 | -1 |
A. | ①② | B. | ③④ | C. | ①②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 等邊三角形 | B. | 直角三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{6}$個(gè)單位 | B. | 向右平移$\frac{π}{3}$個(gè)單位 | ||
C. | 向左平移$\frac{π}{6}$個(gè)單位 | D. | 向左平移$\frac{π}{3}$個(gè)單位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com