如圖,在三棱錐A—BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1.另一個側(cè)面ABC是正三角形.

(1)求證:AD⊥BC;

(2)求二面角B-AC-D的大小;

(3)在線段AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定點E的位置;若不存在,請說明理由.

(1)證法一:作AH⊥面BCD于H,連結(jié)DH,AB⊥BDHB⊥BD,

∵AD=,BD=1,

∴AB==BC=AC.

∴BD⊥DC.

又BD=CD,則BHCD是正方形,

則DH⊥BC,

∴AD⊥BC.

證法二:取BC的中點O,連結(jié)AO、DO,

則有AO⊥BC,DO⊥BC.

∴BC⊥面AOD.∴BC⊥AD.

(2)解:作BM⊥AC于M,作MN⊥AC交AD于N,

則∠BMN就是二面角BACD的平面角.

∵AB=AC=BC=,

∴M是AC的中點,且MN∥CD.

∴BM=,MN=CD=,BN=AD=.

由余弦定理得cos∠BMN=.

∴∠BMN=arccos.

(3)解:設(shè)E為所求的點,作EF⊥CH于F,連結(jié)FD,則EF∥AH.

∴EF⊥面BCD,∠EDF就是ED與面BCD所成的角,則∠EDF=30°.

設(shè)EF=x,易得AH=HC=1,則CF=x,FD=1+x2.

∴tan∠EDF=,解得x=,則CE==1.

故線段AC上存在E點,且CE=1時,ED與面BCD成30°角.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個側(cè)面是正三角形.
(1)求證:AD⊥BC.
(2)求二面角B-AC-D的大小.
(3)在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在三棱錐A-BOC中,AO⊥底面BOC,∠OAB=∠OAC=30°,AB=AC=4,BC=2
2
,動點D在線段AB上.
(Ⅰ)求證:平面COD⊥平面AOB;
(Ⅱ)當點D運動到線段AB的中點時,求二面角D-CO-B的大小;
(Ⅲ)當CD與平面AOB所成角最大時,求三棱錐C-OBD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,AD⊥平面ABC,∠BAC=120°,且AB=AC=AD=2,點E在BC上,且AE⊥AC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求點B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BOC中,AO⊥面BOC,二面角B-AO-C是直二面角,OB=OC,∠OAB=
π6
,斜邊AB=4,動點D在斜邊AB上.
(1)求證:平面COD⊥平面AOB;
(2)當D為AB的中點時,求:異面直線AO與CD所成角大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=
3
,BD=CD=1,另一個側(cè)面是正三角形
(1)求證:AD⊥BC
(2)求二面角B-AC-D的大小.

查看答案和解析>>

同步練習冊答案