【題目】已知函數(shù).
(1)令,判斷g(x)的單調(diào)性;
(2)當(dāng)x>1時(shí),,求a的取值范圍.
【答案】(1)見(jiàn)解析;(2)
【解析】
(1)求出,分兩種情況討論的范圍,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間;(2)討論的范圍,分別利用導(dǎo)數(shù)以及函數(shù)的單調(diào)性,結(jié)合單調(diào)性判斷函數(shù)是否有最大值,當(dāng)函數(shù)有最大值時(shí),令其最大值小于零即可求得的范圍.
(1)由,則,
所以(x>0).
①當(dāng)a≤0時(shí),,為的減函數(shù);
②當(dāng)a>0時(shí),
若,即時(shí),,為的減函數(shù);
若,即時(shí),由有兩根得
在上,為減函數(shù);在上,為增函數(shù);
在上,為減函數(shù).
綜上:當(dāng)時(shí),為的減函數(shù);
當(dāng)時(shí),在上,為減函數(shù);在上,為增函數(shù);在上,為減函數(shù).
(2)由(1)知,對(duì)a討論如下,
①當(dāng)a≤0時(shí),,則為(1,+∞)上的減函數(shù),
則,故為(1,+∞)的減函數(shù),
由于,所以,即a≤0時(shí)滿足題意.
②當(dāng)a>0時(shí),由于,對(duì)其討論如下:
(A)若,即a≤1,則由(1)知,為(1,+∞)上的減函數(shù),
則,所以為(1,+∞)的減函數(shù),
由于,所以,即0<a≤1時(shí)滿足題意.
(B)若,即a>1,則由(1)知,
當(dāng)時(shí),為(1,+∞)上的減函數(shù),又,
所以存在,使得在時(shí),,于是為的增函數(shù),
因?yàn)?/span>,
所以,即1<a≤時(shí)不滿足題意.
當(dāng)時(shí),由于,所以對(duì)與1的大小關(guān)系討論如下,
1)如果,即,那么由(1)知,為(1,+∞)上的減函數(shù),
又,
則存在,使得在時(shí),,于是為的增函數(shù),
又,則,即時(shí)不滿足題意.
2)如果,即,那么由(1)知,為(1,)上的增函數(shù),
則當(dāng)時(shí),,于是為的增函數(shù),
又,則,即時(shí)不滿足題意.
綜上所述,a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤(pán),三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤(pán),較大的圓盤(pán)都在較小的圓盤(pán)下面.現(xiàn)把圓盤(pán)從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤(pán),且每次移動(dòng)后,每根柱上較大的圓盤(pán)不能放在較小的圓盤(pán)上面,規(guī)定一個(gè)圓盤(pán)從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤(pán)從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則__________,__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中正確的個(gè)數(shù)有( )
①向量與是共線向量,則A、B、C、D四點(diǎn)必在一直線上;②單位向量都相等;③任一向量與它的相反向量不相等;④共線的向量,若起點(diǎn)不同,則終點(diǎn)一定不同.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)fn(x)=xn+bx+c(n∈Z,b,c∈R).
(1)若n=﹣1,且f﹣1(1)=f﹣1()=5,試求實(shí)數(shù)b,c的值;
(2)設(shè)n=2,若對(duì)任意x1,x2∈[﹣1,1]有|f2(x1)﹣f2(x2)|≤6恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合A={-4,2a-1,a2},B={a-5,1-a,9},分別求適合下列條件的a的值.
(1)9∈(A∩B);(2){9}=A∩B.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com