直線與圓心為D的圓交于A、B兩點(diǎn),則直線ADBD的傾斜角之和為(   )
A.πB.πC.πD.π
C

試題分析:根據(jù)題目條件畫(huà)出圓的圖象與直線的圖象,再利用圓的性質(zhì)建立兩個(gè)傾斜角的等量關(guān)系,化簡(jiǎn)整理即可求出
解:直線的斜率為,所以它的傾斜角為:畫(huà)出直線與圓的圖象,

由圖象及三角形的外角與不相鄰的內(nèi)角關(guān)系,可知:∠1=α-,∠2=+π-β,由圓的性質(zhì)可知,直線AD,BD過(guò)圓心,三角形ABD是等腰三角形,∴∠1=∠2,∴α-=+π-β,故α+β=π,故答案為:C
點(diǎn)評(píng):本題主要考查了圓的方程與直線方程的位置關(guān)系,直線的傾斜角,三角形的角的關(guān)系,直線和圓的方程的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知與拋物線交于A、B兩點(diǎn),
(1)若|AB|="10," 求實(shí)數(shù)的值。
(2)若, 求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

坐標(biāo)系與參數(shù)方程在直角坐標(biāo)系中,直線的參數(shù)方程為(t 為參數(shù))。在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為。
(1)求圓C的直角坐標(biāo)方程;
(2)設(shè)圓C與直線交于點(diǎn)A,B,若點(diǎn)P的坐標(biāo)為(2,),求|PA|+|PB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程表示雙曲線,則實(shí)數(shù)k的取值范圍是  (    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩定點(diǎn),,動(dòng)點(diǎn)滿足,由點(diǎn)軸作垂線段,垂足為,點(diǎn)滿足,點(diǎn)的軌跡為.
(1)求曲線的方程;
(2)過(guò)點(diǎn)作直線與曲線交于,兩點(diǎn),點(diǎn)滿足為原點(diǎn)),求四邊形面積的最大值,并求此時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的參數(shù)方程為,曲線的極坐標(biāo)方程為
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)判斷曲線與曲線的交點(diǎn)個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓上的任意一點(diǎn)(除短軸端點(diǎn)除外)與短軸兩個(gè)端點(diǎn)的連線交軸于點(diǎn),則的最小值是      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,過(guò)作與軸垂直的直線與橢圓交于,而與拋物線交于兩點(diǎn),且.

(Ⅰ)求橢圓的方程;
(Ⅱ)若過(guò)的直線與橢圓相交于兩點(diǎn),
設(shè)為橢圓上一點(diǎn),且滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角坐標(biāo)系中,一直角三角形,,B、D在軸上且關(guān)于原點(diǎn)對(duì)稱(chēng),在邊上,BD=3DC,△ABC的周長(zhǎng)為12.若一雙曲線以B、C為焦點(diǎn),且經(jīng)過(guò)A、D兩點(diǎn).

⑴ 求雙曲線的方程;
⑵ 若一過(guò)點(diǎn)為非零常數(shù))的直線與雙曲線相交于不同于雙曲線頂點(diǎn)的兩點(diǎn)、,且,問(wèn)在軸上是否存在定點(diǎn),使?若存在,求出所有這樣定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案