已知雙曲線的中心在原點(diǎn),焦點(diǎn)x軸上,它的一條漸近線與x軸的夾角為α,且數(shù)學(xué)公式,則雙曲線的離心率的取值范圍是


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    (1,2)
  4. D.
    數(shù)學(xué)公式
B
分析:先表示出漸近線方程,利用求得tanα=,根據(jù)α的范圍確定tanα范圍,進(jìn)而確定的范圍,同時(shí)利用c=轉(zhuǎn)化成a和c的不等式關(guān)系求得的范圍,即離心率的范圍.
解答:∵其中以漸近線方程為y=x
則tanα=
,
∴1<tanα<,即1<
∴1<=<3求得<2
故選B.
點(diǎn)評(píng):本題主要考查了雙曲線的簡(jiǎn)單性質(zhì).考查了學(xué)生對(duì)雙曲線基礎(chǔ)知識(shí)的理解和運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)為F1(0,-2
2
)
,F(xiàn)2(0,2
2
),且離心率e=
3
2
4
,求雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)F1,F(xiàn)2在x軸上,準(zhǔn)線方程為x=±
1
2
,漸近線為y=±
3
x

(1)求雙曲線的方程;
(2)若A、B分別為雙曲線的左、右頂點(diǎn),雙曲線的弦PQ垂直于x軸,求直線AP與BQ的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在原點(diǎn),焦點(diǎn)x軸上,它的一條漸近線與x軸的夾角為α,且
π
4
<α<
π
3
,則雙曲線的離心率的取值范圍是(  )
A、(1,
2
)
B、(
2
,2)
C、(1,2)
D、(2,2
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)一模)已知雙曲線的中心在原點(diǎn),焦點(diǎn)在x軸上,一條漸近線方程為y=
3
4
x
,則該雙曲線的離心率是
5
4
5
4

查看答案和解析>>

同步練習(xí)冊(cè)答案