(本題13分) 已知點,直線:,為平面上的動點,過點作直線的垂線,垂足為,且.
(1)求動點的軌跡的方程;
(2)已知圓過定點,圓心在軌跡上運動,且圓與軸交于、兩點,設(shè),,求的最大值.
科目:高中數(shù)學 來源: 題型:
(本題13分)已知橢圓的方程是,點分別是橢圓的長軸的左、右端點,
左焦點坐標為,且過點。
(Ⅰ)求橢圓的方程;
(Ⅱ)已知是橢圓的右焦點,以為直徑的圓記為圓,試問:過點能否引圓的切線,若能,求出這條切線與軸及圓的弦所對的劣弧圍成的圖形的面積;若不能,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆北京師大附中高一第二學期期中考試數(shù)學試卷(解析版) 題型:解答題
(本題13分)已知,點在函數(shù)的圖象上,其中
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求;
(3)記,求數(shù)列的前n項和為Sn,并證明Sn<1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com