【題目】已知{an}是首項為19,公差為-2的等差數(shù)列,Sn為{an}的前n項和.
(1)求通項an及Sn;
(2)設{bn-an}是首項為1,公比為3的等比數(shù)列,求數(shù)列{bn}的通項公式及前n項和Tn.
【答案】(1)an=21-2n, Sn=20n-n2.(2) 見解析.
【解析】試題分析:(1)直接代入等差數(shù)列的通項公式及前n項和公式可求an及Sn
(2))利用等比數(shù)列的通項公式可求bn﹣an,結合(1)中的an代入可求bn,利用分組求和及等比數(shù)列的前n項和公式可求
試題解析:
(1)∵{an}是首項為a1=19,公差為d=-2的等差數(shù)列,
∴an=19-2(n-1)=21-2n,
∴Sn=19n+n(n-1)×(-2)=20n-n2.
(2)由題意得bn-an=3n-1,即bn=an+3n-1,
∴bn=3n-1-2n+21,
∴Tn=Sn+(1+3+…+3n-1)=-n2+20n+.
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三人獨立地對某一技術難題進行攻關.甲能攻克的概率為 ,乙能攻克的概率為 ,丙能攻克的概率為 .
(1)求這一技術難題被攻克的概率;
(2)若該技術難題末被攻克,上級不做任何獎勵;若該技術難題被攻克,上級會獎勵a萬元.獎勵規(guī)則如下:若只有1人攻克,則此人獲得全部獎金a萬元;若只有2人攻克,則獎金獎給此二人,每人各得 萬元;若三人均攻克,則獎金獎給此三人,每人各得 萬元.設甲得到的獎金數(shù)為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= ,若f(a)=f(b)=f(c)=f(d),其中a,b,c,d互不相等,則對于命題p:abcd∈(0,1)和命題q:a+b+c+d∈[e+e﹣1﹣2,e2+e﹣2﹣2)真假的判斷,正確的是( )
A.p假q真
B.p假q假
C.p真q真
D.p真q假
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】徐州市為加快新老城區(qū)的融合并進一步緩解交通壓力,現(xiàn)經過食品城至新城區(qū)(昆侖大道)和食品城至高速入口(迎賓大道),分別修建地鐵2號線和快速通道,如圖,已知兩條公路夾角為60°,為了便于施工擬在兩條公路之間的區(qū)域內建一混凝土攪拌站P,并分別在兩條公路邊上建兩個中轉站M、N (異于點A),要求PM=PN=MN=2(單位:千米).
(1)
(2)問為多大時,使得混凝土攪拌站產生的噪聲對食品城的影響最小(即攪拌站與食品城的距離最遠).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足an+1﹣an=2,a1=﹣5,則|a1|+|a2|+…+|a6|=( )
A.9
B.15
C.18
D.30
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題 :“函數(shù) 在區(qū)間 上單調遞減”;命題 :“存在正數(shù) ,使得 成立”,若 為真命題,則 的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)ex+a(x+2)2(x>0).
(1)若f(x)是(0,+∞)的單調遞增函數(shù),求實數(shù)a的取值范圍;
(2)當 時,求證:函數(shù)f(x)有最小值,并求函數(shù)f(x)最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+m與函數(shù) 的圖象上至少存在一對關于x軸對稱的點,則實數(shù)m的取值范圍是( )
A.
B.
C.
D.[2﹣ln2,2]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大指出中國的電動汽車革命早已展開,通過以新能源汽車替代汽/柴油車,中國正在大力實施一項將重塑全球汽車行業(yè)的計劃.年某企業(yè)計劃引進新能源汽車生產設備,通過市場分析,全年需投入固定成本萬元,每生產(百輛),需另投入成本萬元,且.由市場調研知,每輛車售價萬元,且全年內生產的車輛當年能全部銷售完.
(1)求出2018年的利潤(萬元)關于年產量(百輛)的函數(shù)關系式;(利潤=銷售額-成本)
(2)2018年產量為多少百輛時,企業(yè)所獲利潤最大?并求出最大利潤.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com