【題目】數(shù)學(xué)家歐拉在年提出定理:三角形的外心、重心、垂心依次位于同一直線(xiàn)上,且重心到外心的距離是重心到垂心距離的一半,這條直線(xiàn)后人稱(chēng)之為三角形的歐拉線(xiàn).已知的頂點(diǎn)、,若其歐拉線(xiàn)方程為,則頂點(diǎn)的坐標(biāo)是( )
參考公式:若的頂點(diǎn)、、的坐標(biāo)分別是、、,則該的重心的坐標(biāo)為.
A.B.,
C.,D.
【答案】A
【解析】
設(shè)點(diǎn)的坐標(biāo)為,由重心的坐標(biāo)公式求得該三角形的重心坐標(biāo),代入歐拉線(xiàn)方程得一方程,求出線(xiàn)段的垂直平分線(xiàn)方程,和歐拉線(xiàn)方程聯(lián)立求出三角形的外心,由外心到兩個(gè)頂點(diǎn)的距離相等得出另一方程,兩方程聯(lián)立可求出點(diǎn)的坐標(biāo).
設(shè)點(diǎn)的坐標(biāo)為,由重心的坐標(biāo)公式可知的重心為,
代入歐拉線(xiàn)方程得,整理得,①
線(xiàn)段的中點(diǎn)坐標(biāo)為,直線(xiàn)的斜率為,
線(xiàn)段的垂直平分線(xiàn)方程為,即,
聯(lián)立,解得,所以,的外心為,
則,整理得,②
聯(lián)立①②得或,
當(dāng),時(shí),點(diǎn)、重合,舍去,因此,頂點(diǎn)的坐標(biāo)是.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】攀枝花是一座資源富集的城市,礦產(chǎn)資源儲(chǔ)量巨大,已發(fā)現(xiàn)礦種76種,探明儲(chǔ)量39種,其中釩、鈦資源儲(chǔ)量分別占全國(guó)的63%和93%,占全球的11%和35%,因此其素有“釩鈦之都”的美稱(chēng).攀枝花市某科研單位在研發(fā)鈦合金產(chǎn)品的過(guò)程中發(fā)現(xiàn)了一種新合金材料,由大數(shù)據(jù)測(cè)得該產(chǎn)品的性能指標(biāo)值y(y值越大產(chǎn)品的性能越好)與這種新合金材料的含量x(單位:克)的關(guān)系為:當(dāng)0≤x<7時(shí),y是x的二次函數(shù);當(dāng)x≥7時(shí),.測(cè)得部分?jǐn)?shù)據(jù)如表:
(1)求y關(guān)于x的函數(shù)關(guān)系式y=f(x);
(2)求該新合金材料的含量x為何值時(shí)產(chǎn)品的性能達(dá)到最佳.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取100名學(xué)生,將他們某次考試的數(shù)學(xué)成績(jī)(均為整數(shù))分成六段:[40,50),[50,60),…,[90,100]后得到頻率分布直方圖(如圖所示),
(1)求分?jǐn)?shù)在[70,80)中的人數(shù);
(2)若用分層抽樣的方法從分?jǐn)?shù)在[40,50)和[50,60)的學(xué)生中共抽取5 人,該5 人中成績(jī)?cè)?/span>[40,50)的有幾人?
(3)在(2)中抽取的5人中,隨機(jī)選取2 人,求分?jǐn)?shù)在[40,50)和[50,60)各1 人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,平面平面,為等邊三角形,且,,分別為,的中點(diǎn).
(1)求證:平面;
(2)求證:平面平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)a,b滿(mǎn)足ab>0且a≠b,由a、b、、按一定順序構(gòu)成的數(shù)列( 。
A. 可能是等差數(shù)列,也可能是等比數(shù)列
B. 可能是等差數(shù)列,但不可能是等比數(shù)列
C. 不可能是等差數(shù)列,但可能是等比數(shù)列
D. 不可能是等差數(shù)列,也不可能是等比數(shù)列
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)過(guò)點(diǎn),且焦點(diǎn)為F,直線(xiàn)l與拋物線(xiàn)相交于A,B兩點(diǎn).
⑴求拋物線(xiàn)C的方程,并求其準(zhǔn)線(xiàn)方程;
⑵為坐標(biāo)原點(diǎn).若,證明直線(xiàn)l必過(guò)一定點(diǎn),并求出該定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中, ,且.
(Ⅰ)當(dāng)時(shí),證明:平面平面;
(Ⅱ)當(dāng)四棱錐的體積為,且二面角為鈍角時(shí),求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若直線(xiàn)與曲線(xiàn)的交點(diǎn)的橫坐標(biāo)為,且,求整數(shù)所有可能的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com