已知實(shí)數(shù)a滿足1<a<2.
命題P:函數(shù)y=loga(2-ax)在區(qū)間[0,1]上是減函數(shù),
命題Q:|x|<1是x<a的充分不必要條件,則


  1. A.
    “P或Q”為真命題
  2. B.
    “P且Q”為假命題
  3. C.
    P且Q”為真命題
  4. D.
    P或Q”為真命題
A
分析:P:由“函數(shù)y=loga(2-ax)在區(qū)間[0,1]上是減函數(shù)”結(jié)合復(fù)合函數(shù)的單調(diào)性可求解;Q:由“|x|<1是x<a的充分不必要條件”結(jié)合集合法可求解.最后用““P或Q”一真則真,“P且Q”一假則假”來(lái)確定選項(xiàng).
解答:P:∵函數(shù)y=loga(2-ax)在區(qū)間[0,1]上是減函數(shù)

∵1<a<2
∴1<a<2
Q:∵|x|<1是x<a的充分不必要條件
∴a≥1
故選A
點(diǎn)評(píng):本題主要通過(guò)常用邏輯用語(yǔ)來(lái)考查復(fù)合函數(shù)的單調(diào)性和不等式的解法及集合的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)a滿足1<a≤2,設(shè)函數(shù)f (x)=
1
3
x3-
a+1
2
x2+ax.
(Ⅰ) 當(dāng)a=2時(shí),求f (x)的極小值;
(Ⅱ) 若函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,求證:g(x)的極大值小于等于10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

9、已知實(shí)數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說(shuō)法正確的是

①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:西安中學(xué)2007年高考理科數(shù)學(xué)模擬試題 題型:013

已知實(shí)數(shù)a滿足1<a<2命題P:函數(shù)y=loga(2-ax)在區(qū)間[0,1]上是減函數(shù).

命題Q:|x|<1是x<a的充分不必要條件.則

[  ]

A.P且Q”為真命題;

B.“P且Q”為假命題;

C.“P或Q”為真命題;

D.P或Q”為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知實(shí)數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說(shuō)法正確的是 ________.
①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)(理科)一輪復(fù)習(xí)講義:1.3 簡(jiǎn)單的邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞(解析版) 題型:解答題

已知實(shí)數(shù)a滿足1<a<2,命題p:函數(shù)y=loga(2-ax)在[0,1]上是減函數(shù),命題q:“|x|<1”是“x<a”的充分不必要條件,則下面說(shuō)法正確的是    
①p或q為真命題;②p且q為假命題;③非p且q為真命題;④非p或非q為真命題、

查看答案和解析>>

同步練習(xí)冊(cè)答案