A. | f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得到$g(x)=\sqrt{2}sin(2x+\frac{π}{4})$的圖象 | |
B. | 若f(x1)=f(x2),則x1-x2=kπ,k∈Z | |
C. | f(x)的圖象關(guān)于直線$x=\frac{5}{8}π$對(duì)稱(chēng) | |
D. | f(x)的圖象關(guān)于點(diǎn)$(-\frac{3}{8}π,0)$對(duì)稱(chēng) |
分析 根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱(chēng)性,得出結(jié)論.
解答 解:函數(shù)f(x)=2sinxcosx+cos2x=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$),
故把f(x)的圖象向右平移$\frac{π}{4}$個(gè)單位長(zhǎng)度后得到g(x)=$\sqrt{2}$sin[2(x-$\frac{π}{4}$)+$\frac{π}{4}$]=$\sqrt{2}$sin(2x-$\frac{π}{4}$)的圖象,故排除A.
若f(x1)=f(x2),則x1-x2=kπ,k∈Z不對(duì),例如f(0)=f($\frac{π}{2}$)=1,但0-$\frac{π}{2}$≠kπ,k∈Z,故排除B.
令x=$\frac{5π}{8}$,求得f(x)=$\sqrt{2}$sin$\frac{3π}{2}$=-$\sqrt{2}$,為f(x)的最小值,故f(x)的圖象關(guān)于直線$x=\frac{5}{8}π$對(duì)稱(chēng),故C滿足條件.
令x=-$\frac{3π}{8}$,求得f(x)=$\sqrt{2}$sin(-$\frac{π}{2}$)=-$\sqrt{2}$,為f(x)的最小值,故f(x)的圖象不關(guān)于點(diǎn)$(-\frac{3}{8}π,0)$對(duì)稱(chēng),故排除D,
故選:C.
點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的圖象的對(duì)稱(chēng)性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | P⊆Q | B. | Q⊆P | C. | P?∁RQ | D. | Q⊆∁RP |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | 2 | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 非充分非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{3}{5}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com