分析 32n+2-8n-9=9n+1-8n-9=(8+1)n+1-8n-9,利用二項(xiàng)式定理展開即可證明.
解答 解:32n+2-8n-9=9n+1-8n-9=(8+1)n+1-8n-9=${8}^{n+1}+{∁}_{n+1}^{1}{8}^{n}$+…+${∁}_{n+1}^{n}8$+1-8n-9=${8}^{n+1}+{∁}_{n+1}^{1}{8}^{n}$+…+${∁}_{n+1}^{2}{8}^{2}$=64$({8}^{n-1}+{∁}_{n+1}^{1}{8}^{n-2}+…+{∁}_{n+1}^{2})$
∴32n+2-8n-9能被64整除(n∈N).
點(diǎn)評 本題考查了二項(xiàng)式定理的應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{216}{625}$ | B. | $\frac{108}{625}$ | C. | $\frac{36}{625}$ | D. | $\frac{18}{125}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(7)<f(6.5)<f(4.5) | B. | f(7)<f(4.5)<f(6.5) | C. | f(4.5)<f(6.5)<f(7) | D. | f(4.5)<f(7)<f(6.5) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{16}{5}$ | D. | $\frac{21}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a>b,c>d,則a-d<b-c | B. | 若ac2>bc2,則a>b | ||
C. | 若c<b<a,且ac<0,則cb2<ab2 | D. | 若a>b,則lg(a-b)>0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com