如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=,過左焦點(diǎn)F1x軸的垂線交橢圓于A、A′兩點(diǎn),=4.

(1)求該橢圓的標(biāo)準(zhǔn)方程;

(2)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P,P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q.求△PPQ的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

 

【答案】

1+=1 22 (x+)2+y2=6,(x-)2+y2=6

【解析】

:(1)由題意知點(diǎn)A(-c,2)在橢圓上,+=1,從而e2+=1,

e=,b2==8,從而a2==16.

故該橢圓的標(biāo)準(zhǔn)方程為+=1.

(2)由橢圓的對稱性,可設(shè)Q(x0,0).又設(shè)M(x,y)是橢圓上任意一點(diǎn),|QM|2=(x-x0)2+y2=x2-2x0x++8×1-=(x-2x0)2-+8(x[-4,4]).

設(shè)P(x1,y1),由題意知,P是橢圓上到Q的距離最小的點(diǎn),

因此,當(dāng)x=x1|QM|2取最小值,

x1(-4,4),所以當(dāng)x=2x0|QM|2取最小值,

從而x1=2x0,|QP|2=8-.

由對稱性知P(x1,-y1),|PP|=|2y1|,

所以S=|2y1||x1-x0|

=×2|x0|

=

=·.

當(dāng)x0=±,PPQ的面積S取得最大值2.

此時對應(yīng)的圓Q的圓心坐標(biāo)為Q(±,0),半徑|QP|==,

因此,這樣的圓有兩個,其標(biāo)準(zhǔn)方程分別為(x+)2+y2=6,(x-)2+y2=6.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過B1做直線l交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•重慶)如圖,設(shè)橢圓的中心為原點(diǎn)O,長軸在x軸上,上頂點(diǎn)為A,左、右焦點(diǎn)分別為F1,F(xiàn)2,線段OF1,OF2的中點(diǎn)分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標(biāo)準(zhǔn)方程;
(Ⅱ)過B1作直線交橢圓于P,Q兩點(diǎn),使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓的中心為原點(diǎn)O,已知右準(zhǔn)線l的方程為x=4,右焦點(diǎn)F到它的距離為2.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓C經(jīng)過點(diǎn)F,且被直線l截得的弦長為4,求使OC長最小時圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•重慶)如圖,橢圓的中心為原點(diǎn)O,長軸在x軸上,離心率e=
2
2
,過左焦點(diǎn)F1作x軸的垂線交橢圓于A、A′兩點(diǎn),|AA′|=4.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)取平行于y軸的直線與橢圓相交于不同的兩點(diǎn)P、P′,過P、P′作圓心為Q的圓,使橢圓上的其余點(diǎn)均在圓Q外.求△PP'Q的面積S的最大值,并寫出對應(yīng)的圓Q的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案