【題目】某超市在節(jié)日期間進(jìn)行有獎(jiǎng)促銷(xiāo),凡在該超市購(gòu)物滿(mǎn)400元的顧客,將獲得一次摸獎(jiǎng)機(jī)會(huì),規(guī)則如下:獎(jiǎng)盒中放有除顏色外完全相同的1個(gè)紅球,1個(gè)黃球,1個(gè)白球和1個(gè)黑球顧客不放回的每次摸出1個(gè)球,若摸到黑球則停止摸獎(jiǎng),否則就繼續(xù)摸球規(guī)定摸到紅球獎(jiǎng)勵(lì)20元,摸到白球或黃球獎(jiǎng)勵(lì)10元,摸到黑球不獎(jiǎng)勵(lì)

1)求1名顧客摸球2次停止摸獎(jiǎng)的概率:

2)記1名顧客5次摸獎(jiǎng)獲得的獎(jiǎng)金數(shù)額,求隨機(jī)變量的分布列和數(shù)學(xué)期望

【答案】12)詳見(jiàn)解析

【解析】

1)由題意可得第二次摸到黑球,第一次為其它球,求出概率;

2)先求出摸獎(jiǎng)一次獲得的的獎(jiǎng)金數(shù)額,再求5次的數(shù)額,求出相應(yīng)的概率,進(jìn)而求出分布列,及期望.

1)由題意可得第一次是紅黃白中的一個(gè),概率為,

不放回的第二次為黑球,是從剩余的3個(gè)球中摸出黑色的球,概率為

所以1名顧客摸球2次停止摸獎(jiǎng)的概率為;

2)顧客摸獎(jiǎng)一次獲得的獎(jiǎng)金數(shù)額設(shè)為,

的可能取值0,10,2030,40,

,

,,

;

所以1名顧客5次摸獎(jiǎng)獲得獎(jiǎng)金數(shù)額的分布列為

所以隨機(jī)變量的期望

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1642年,帕斯卡發(fā)明了一種可以進(jìn)行十進(jìn)制加減法的機(jī)械計(jì)算機(jī)年,萊布尼茨改進(jìn)了帕斯卡的計(jì)算機(jī),但萊布尼茲認(rèn)為十進(jìn)制的運(yùn)算在計(jì)算機(jī)上實(shí)現(xiàn)起來(lái)過(guò)于復(fù)雜,隨即提出了“二進(jìn)制”數(shù)的概念之后,人們對(duì)進(jìn)位制的效率問(wèn)題進(jìn)行了深入的研究研究方法如下:對(duì)于正整數(shù),,我們準(zhǔn)備張不同的卡片,其中寫(xiě)有數(shù)字0,1,…,的卡片各有如果用這些卡片表示進(jìn)制數(shù),通過(guò)不同的卡片組合,這些卡片可以表示個(gè)不同的整數(shù)例如,時(shí),我們可以表示出個(gè)不同的整數(shù)假設(shè)卡片的總數(shù)為一個(gè)定值,那么進(jìn)制的效率最高則意味著張卡片所表示的不同整數(shù)的個(gè)數(shù)最大根據(jù)上述研究方法,幾進(jìn)制的效率最高?  

A. 二進(jìn)制 B. 三進(jìn)制 C. 十進(jìn)制 D. 十六進(jìn)制

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人設(shè)計(jì)一項(xiàng)單人游戲,規(guī)則如下:先將一棋子放在如圖所示正方形(邊長(zhǎng)為2個(gè)單位)的頂點(diǎn)處,然后通過(guò)擲骰子來(lái)確定棋子沿正方形的邊按逆時(shí)針?lè)较蛐凶叩膯挝,如果擲出的點(diǎn)數(shù)為,則棋子就按逆時(shí)針?lè)较蛐凶?/span>個(gè)單位,一直循環(huán)下去.則某人拋擲三次骰子后棋子恰好又回到點(diǎn)處的所有不同走法共有( )

A. 22種 B. 24種 C. 25種 D. 27種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時(shí),求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】物線的焦點(diǎn)為,已知點(diǎn)為拋物線上的兩個(gè)動(dòng)點(diǎn),且滿(mǎn)足,過(guò)弦的中點(diǎn)作該拋物線準(zhǔn)線的垂線,垂足為,則的最小值為  

A. B. 1 C. D. 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

1)討論函數(shù)上的單調(diào)性;

2)若,當(dāng)時(shí),,且有唯一零點(diǎn),證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給定下列四個(gè)命題

若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;

若一條直線和兩個(gè)互相垂直的平面中的一個(gè)平面垂直,那么這條直線一定平行于另一個(gè)平面;

若一條直線和兩個(gè)平行平面中的一個(gè)平面垂直,那么這條直線也和一個(gè)平面垂直;

若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直,

其中,真命題的個(gè)數(shù)是  

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如右圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)中僅有一人申請(qǐng)了北京大學(xué)的自主招生考試,當(dāng)他們被問(wèn)到誰(shuí)申請(qǐng)了北京大學(xué)的自主招生考試時(shí),甲說(shuō):“丙或丁申請(qǐng)了”;乙說(shuō):“丙申請(qǐng)了”;丙說(shuō):“甲和丁都沒(méi)有申請(qǐng)”;丁說(shuō):“乙申請(qǐng)了”,如果這四位同學(xué)中只有兩人說(shuō)的是對(duì)的,那么申請(qǐng)了北京大學(xué)的自主招生考試的同學(xué)是______

查看答案和解析>>

同步練習(xí)冊(cè)答案