已知函數(shù)f (x)是定義在R上的奇函數(shù),若f(x)在區(qū)間[1,a](a>2)上單調(diào)遞增,且f (x)>0,則以下不等式不一定成立的是


  1. A.
    f (a)>f (0)
  2. B.
    f (數(shù)學(xué)公式)>f (數(shù)學(xué)公式
  3. C.
    f (數(shù)學(xué)公式)>f (-a)
  4. D.
    f (數(shù)學(xué)公式)>f (-2)
D
分析:對(duì)于A,根據(jù)函數(shù)f (x)是定義在R上的奇函數(shù),可得f(0)=0,利用f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,且f (x)>0,可得f(a)>f(0);
對(duì)于B,利用基本不等式可得,結(jié)合f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,即可得到結(jié)論;
對(duì)于C,先確定,利用f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,函數(shù)f (x)是定義在R上的奇函數(shù),即可得到結(jié)論;
對(duì)于D,由a>2,可得=,分類討論,即可得到結(jié)論.
解答:對(duì)于A,∵函數(shù)f (x)是定義在R上的奇函數(shù),∴f(0)=0,∵f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,且f (x)>0,∴f(a)>f(0),即A成立;
對(duì)于B,∵a>2,∴,∵f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,∴f ()>f (),即B成立;
對(duì)于C,∵a>2,∴=<0,∴
=>0,∴
∵f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,
∴f()<f(a)
∴-f()>-f(a)
∵函數(shù)f (x)是定義在R上的奇函數(shù),∴f()>f(-a),即C成立;
對(duì)于D,∵a>2,∴=
若2<a<3,則,∴,∵f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,
∴f()<f(2)
∴-f()>-f(2)
∵函數(shù)f (x)是定義在R上的奇函數(shù),∴f()>f(-2),即D成立;
若a≥3,則,∴,∵f (x)在區(qū)間[1,a](a>2)上單調(diào)遞增,
∴f()≥f(2)
∴-f()≤-f(2)
∵函數(shù)f (x)是定義在R上的奇函數(shù),∴f()≤f(-2),即D不成立;
故選D.
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性與奇偶性的結(jié)合,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在[-1,1]上的函數(shù),若對(duì)于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0時(shí),有f(x)>0
(1)判斷函數(shù)的奇偶性;
(2)判斷函數(shù)f(x)在[-1,1]上是增函數(shù),還是減函數(shù),并用單調(diào)性定義證明你的結(jié)論;
(3)設(shè)f(1)=1,若f(x)<(1-2a)m+2,對(duì)所有x∈[-1,1],a∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是偶函數(shù),當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(-
1
2
)
的值為
2
-1
2
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是 R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點(diǎn),那么|f(x)|<1的解集是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),其最小正周期為3,且當(dāng)x∈(0,
3
2
)
時(shí),f(x)=2-x+1,則f(8)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上,圖象關(guān)于原點(diǎn)對(duì)稱,且是f(x+1)=-
1
f(x)
,當(dāng)x∈(0,1)時(shí),f(x)=2x-1,則f(log
1
2
6)=
-
1
2
-
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案