已知雙曲線的左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與雙曲線C相交,其中一個(gè)交點(diǎn)為
(1)求雙曲線C的方程;(2)設(shè)雙曲線C的虛軸一個(gè)端點(diǎn)為B(0,-b),求△F1BM的面積.
【答案】分析:(1)由條件可知,|MF2|=1,|MF1|=3,根據(jù)雙曲線的定義得2a=|MF1|-|MF2|=3-1=2,由此可求出雙曲線方程.
(2)由題意知,直線MF1的方程是,點(diǎn)B到直線MF1的距離,|MF1|=3,由此能求出△F1BM的面積.
解答:解:(1)由條件可知,|MF2|=1,
在直角△F1F2M中,
根據(jù)雙曲線的定義得2a=|MF1|-|MF2|=3-1=2,a=1,從而b=1,
所以雙曲線方程為x2-y2=1.
(2)由題意知,直線MF1的方程是(10分)
點(diǎn)B到直線MF1的距離
又|MF1|=3,所以
點(diǎn)評(píng):本題考查圓錐曲線的綜合運(yùn)用,解題時(shí)要注意公式的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2008年廣東地區(qū)數(shù)學(xué)科全國(guó)各地模擬試題直線與圓錐曲線大題集 題型:044

已知雙曲線的左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與雙曲線C相交,其中一個(gè)交點(diǎn)為

(1)求雙曲線C的方程;

(2)設(shè)雙曲線C的虛軸一個(gè)端點(diǎn)為B(0,-b),求△F1BM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的左右兩個(gè)焦點(diǎn)分別為,點(diǎn)P在雙曲線右支上.

(Ⅰ)若當(dāng)點(diǎn)P的坐標(biāo)為時(shí),,求雙曲線的方程;

(Ⅱ)若,求雙曲線離心率的最值,并寫(xiě)出此時(shí)雙曲線的漸進(jìn)線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年江蘇省揚(yáng)州市高郵市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知雙曲線的左右兩個(gè)焦點(diǎn)分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線l與雙曲線C相交,其中一個(gè)交點(diǎn)為
(1)求雙曲線C的方程;(2)設(shè)雙曲線C的虛軸一個(gè)端點(diǎn)為B(0,-b),求△F1BM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年高三數(shù)學(xué)復(fù)習(xí)(第8章 圓錐曲線):8.2 雙曲線(解析版) 題型:解答題

已知雙曲線的左右兩個(gè)焦點(diǎn)分別是F1,F(xiàn)2,P是它左支上的一點(diǎn),P到左準(zhǔn)線的距離為d.
(1)若y=x是已知雙曲線的一條漸近線,是否存在P點(diǎn),使d,|PF1|,|PF2|成等比數(shù)列?若存在,寫(xiě)出P點(diǎn)坐標(biāo),若不存在,說(shuō)明理由;
(2)在已知雙曲線的左支上,使d,|PF1|,|PF2|成等比數(shù)列的P點(diǎn)存在時(shí),求離心率e的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案