根據(jù)以下樣本數(shù)據(jù)
 x 1 2 3 4
 y-4-3.2-2.1-1
得到回歸方程
y
=bx+a,則下述說法正確的是( 。
A、y與x負(fù)相關(guān)
B、回歸直線必經(jīng)過點(diǎn)(2.5,-3)
C、a<0,b<0
D、a<0,b>0
考點(diǎn):線性回歸方程
專題:概率與統(tǒng)計(jì)
分析:根據(jù)相關(guān)關(guān)系的定義及線性回歸的性質(zhì),逐一分析四個(gè)答案的正誤,可得結(jié)論.
解答: 解:由已知中的數(shù)據(jù),x增大時(shí),y也呈現(xiàn)增大趨勢,故y與x正相關(guān),故A錯(cuò)誤;
.
x
=2.5,
.
y
=-2.575,可得回歸直線必經(jīng)過點(diǎn)(2.5,-2.575),故B錯(cuò)誤;
由A中分析可知b>0,故C錯(cuò)誤,D正確,
故選:D
點(diǎn)評(píng):本題考查線性相關(guān)及回歸方程的應(yīng)用,解題的關(guān)鍵是得到樣本中心點(diǎn),為基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),右焦點(diǎn)為F(3,0)過焦點(diǎn)F的直線l交P,Q兩點(diǎn)線段PQ的中點(diǎn)為M(2,1).求:
(1)直線l的方程;
(2)橢圓的標(biāo)準(zhǔn)方程;
(3)線段PQ的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(1-2x)9=a0+a1x+a2x2+…+a9x10,則|a0|+|a1|+|a2|+…+|a9|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從棱長為1的正方體的8個(gè)頂點(diǎn)中任取3個(gè)點(diǎn),設(shè)隨機(jī)變量X是以這三點(diǎn)為頂點(diǎn)的三角形的面積.
(1)求概率P(X=
1
2
);
(2)求X的分布列,并求其數(shù)學(xué)期望E(X)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4x的焦點(diǎn),P為C上一點(diǎn),若∠OFP=120°,S△POF=( 。
A、
3
B、2
3
C、
3
3
3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一牧羊人趕著一群羊通過4個(gè)關(guān)口,每過一個(gè)關(guān)口,守關(guān)人將拿走當(dāng)時(shí)羊的一半,然后退還1只給牧羊人,過完這些關(guān)口后,牧羊人只剩下2只羊,則牧羊人在過第一個(gè)關(guān)口前有
 
只羊.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠A,∠B,∠C所對邊分別是a,b,c,且bc=2b2+2c2-2a2,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=4x-2x+1(x∈[-2,3])的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:①函數(shù)f1(x)=x+
1
x
(x>0)在(0,1)上單調(diào)遞減,在[1,+∞]上單調(diào)遞增;②函數(shù)f2(x)=x+
4
x
(x>0)在(0,2)上單調(diào)遞減,在[2,+∞)上單調(diào)遞增;③函數(shù)f3(x)=x+
9
x
(x>0)在(0,3)上單調(diào)遞減,在[3,+∞)上單調(diào)遞增;
現(xiàn)給出函數(shù)f(x)=x+
a2
x
(x>0),其中a>0.
(1)根據(jù)以上規(guī)律,寫出函數(shù)f(x)的單調(diào)區(qū)間(不要求證明)
(2)若函數(shù)f(x)在區(qū)間[1,2]上是單調(diào)遞增函數(shù),求a的取值范圍;
(3)若函數(shù)f(x)=x+
a2
x
≥4在區(qū)間[1,3]上恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案