附加題:不等式2≤x2+mx+10≤6有且只有一個解,求實數(shù)m的值.
分析:先將不等式轉(zhuǎn)化為不等式組,再分類討論.若x1=x2,則△1=m2-16=0,m=±4,驗證成立;若x1≠x2,利用根與系數(shù)的關(guān)系可解.
解答:解:
x2+mx+4≤0(1)
x2+mx+8≥0(2)
x1≤x≤x2
x≤x3orx≥x4

若x1=x2,則△1=m2-16=0,m=±4,∵x2+mx+4=0,∴x2+mx+8>0
∴(1)的解集為:{x1},(2)的解集為:R
∴不等式的解集為:{x1}
若△1=m2-16>0,則
x1+x2=-m
x1x2=4
x2+x3=-m
x2x3=8
x1=x3
(舍)
x1+x2=-m
x1x2=4
x1+x4=-m
x1x4=8
x2=x4
(舍)
綜上:m=±4
點評:本題主要考查一元二次不等式的應(yīng)用,解題時應(yīng)注意分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

24、(附加題-選做題)(不等式證明選講)設(shè)f(x)=x2-x+l,實數(shù)a滿足|x-a|<l,求證:|f (x)-f (a)|<2(|a|+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:
已知函數(shù)f(x)=x3+ax2+
3
2
x+
3
2
a
(a為實數(shù)),
(1)求不等式f′(x)>
3
2
-ax
的解集;
(2)若f′(1)=0,①求函數(shù)的單調(diào)區(qū)間;②證明對任意的x1,x2∈(-1,0),不等式|f(x1)-f(x2)|<
5
16
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)已知對于圓x2+(y-1)2=1上任意一點P(x,y)不等式x+y+m≥0恒成立,求實數(shù)m的取值范圍.(滿分10分,計入總分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:(選做題:在下面A、B、C、D四個小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對應(yīng)的一個特征向量e1=
1
1
和特征值λ2=2及對應(yīng)的一個特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點,x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當(dāng)a=1時,求此不等式的解集;
(2)若此不等式的解集為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(附加題)已知定義在[-1,1]上的奇函數(shù)f(x),在x∈(0,1]時,f(x)=
2x4x+1

(1)當(dāng)x∈[-1,1]時,求f(x)的解析式;
(2)設(shè)g(x)=-2x•f(x)(-1<x<0),求函數(shù)y=g(x)的值域;
(3)若關(guān)于x的不等式λf(x)<1在x∈(0,1]上有解,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案