【題目】已知一圓的圓心在直線上,且該圓經(jīng)過兩點(diǎn).

1)求圓的標(biāo)準(zhǔn)方程;

2)若斜率為的直線與圓相交于兩點(diǎn),試求面積的最大值和此時(shí)直線的方程.

【答案】12)最大值2,.

【解析】

1)方法一、求得的垂直平分線方程與已知直線聯(lián)立,求得圓心,可得半徑,即可得到所求圓的方程;

方法二、設(shè)圓的方程為,將點(diǎn)代入可得,,的方程組,解方程可得圓的方程;

2)直線與圓相交,設(shè)直線的方程為,求得圓心到直線的距離和弦長(zhǎng),由三角形的面積公式,化為關(guān)于的二次函數(shù),求得最值,進(jìn)而求得,可得所求直線方程;

1)方法一:兩點(diǎn)的中垂線方程為:,

圓心必在弦的中垂線上,聯(lián)立,

半徑,所以圓的標(biāo)準(zhǔn)方程為:.

方法二:設(shè)圓的標(biāo)準(zhǔn)方程為:,

由題得:,解得:

所以圓的標(biāo)準(zhǔn)方程為:.

2)設(shè)直線的方程為,圓心到直線的距離為,

,且,,

面積

當(dāng),時(shí),取得最大值2

此時(shí),解得:

所以,直線的方程為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,C是圓O上一點(diǎn),AC=BC,且PA⊥平面ABC,EAC的中點(diǎn),FPB的中點(diǎn),PA=,AB=2.求:

(Ⅰ)異面直線EFBC所成的角;

(Ⅱ)點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中裝有除顏色外其他均相同的編號(hào)為a,b的兩個(gè)黑球和編號(hào)為c,d,e的三個(gè)紅球,從中任意摸出兩個(gè)球.

1)求恰好摸出1個(gè)黑球和1個(gè)紅球的概率:

2)求至少摸出1個(gè)黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,,離心率為,且橢圓四個(gè)頂點(diǎn)構(gòu)成的菱形面積為

(1)求橢圓C的方程;

(2)若直線l :y=x+m與橢圓C交于M,N兩點(diǎn),以MN為底邊作等腰三角形,頂點(diǎn)為P(3,-2),求m的值及△PMN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某市111日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)(AQI)小于100表示空氣質(zhì)量?jī)?yōu)良空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇111日至1112日中的某一天到達(dá)該市,并停留3天.

(1)求此人到達(dá)當(dāng)日空氣重度污染的概率;

(2)設(shè)X是此人停留期間空氣重度污染的天數(shù),X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組測(cè)量電視塔AE的高度H(單位m),如示意圖,垂直放置的標(biāo)桿BC高度h=4m,仰角∠ABE=α∠ADE=β

1)該小組已經(jīng)測(cè)得一組α、β的值,tanα=1.24,tanβ=1.20,,請(qǐng)據(jù)此算出H的值

2)該小組分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)適當(dāng)調(diào)整標(biāo)桿到電視塔的距離d(單位m),使αβ之差較大,可以提高測(cè)量精確度,若電視塔實(shí)際高度為125m,問d為多少時(shí),α-β最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 設(shè)函數(shù),

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時(shí),曲線有兩條公切線,求實(shí)數(shù)的取值范圍;

3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且函數(shù)的圖象在點(diǎn)處的切線斜率為

(1)求的值,并求函數(shù)的最值;

(2)當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對(duì)100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計(jì)

男生

10

女生

20

合計(jì)

已知在這100人中隨機(jī)抽取1人抽到喜歡游泳的學(xué)生的概率為

(1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;

(2)并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;

(3)已知在被調(diào)查的學(xué)生中有5名來自甲班,其中3名喜歡游泳,現(xiàn)從這5名學(xué)生中隨機(jī)抽取2人,求恰好有1人喜歡游泳的概率.

下面的臨界值表僅供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案