分析:(Ⅰ)解法一:當(dāng)橢圓E的焦點(diǎn)在x軸上時(shí),設(shè)其方程為
+=1(a>b>0),則由題意可求a=2,又點(diǎn)
C(1,)在橢圓E上,代入橢圓方程可求b,可求
當(dāng)橢圓E的焦點(diǎn)在y軸上時(shí),設(shè)其方程為
+=1(a>b>0),則由題意可得b=2,又點(diǎn)
C(1,)在橢圓E上,代入可求a,結(jié)合橢圓a>b可求
解法二:設(shè)橢圓方程為mx
2+ny
2=1(m>0,n>0),把A(-2,0)、B(2,0)、代入橢圓E的方程,可求m,n,進(jìn)而可求橢圓方程
(Ⅱ)證法一:將直線l:y=k(x-1)代入橢圓E的方程
+=1并整理,,設(shè)直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),由根與系數(shù)的關(guān)系,得x
1+x
2,x
1x
2,從而可
求出直線AM的方程,它與直線x=4的交點(diǎn)坐標(biāo)為P,同理可求得直線BN與直線x=4的交點(diǎn)坐標(biāo)為Q 通過證明P、Q兩點(diǎn)的縱坐標(biāo)相等可證P,Q重合即可證
證法二:將直線l:y=k(x-1),代入橢圓E的方程,直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),由根與系數(shù)的關(guān)系,得x
1+x
2,x
1x
2,從而可求直線AM、直線BN的方程由直線AM與直線BN的方程消去y,可求x=4即可證
證法三:將直線l:y=k(x-1),代入橢圓方程
+=1,設(shè)直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),由根與系數(shù)的關(guān)系,得x
1+x
2,x
1x
2,消去k
2得,2x
1x
2=5(x
1+x
2)-8.,從而可求直線AM、BN的方程,由直線AM與直線BN的方程消去y得可求x=4即證
解答:解(Ⅰ)解法一:當(dāng)橢圓E的焦點(diǎn)在x軸上時(shí),設(shè)其方程為
+=1(a>b>0),
則a=2,又點(diǎn)
C(1,)在橢圓E上,得
+=1.解得b
2=3.
∴橢圓E的方程為
+=1.
當(dāng)橢圓E的焦點(diǎn)在y軸上時(shí),設(shè)其方程為
+=1(a>b>0),
則b=2,又點(diǎn)
C(1,)在橢圓E上,得
+=1.解得a
2=3,這與a>b矛盾.
C(1,)綜上可知,橢圓E的方程為
+=1. …(4分)
解法二:設(shè)橢圓方程為mx
2+ny
2=1(m>0,n>0),
將A(-2,0)、B(2,0)、代入橢圓E的方程,得
解得
m=,
n=.
∴橢圓E的方程為
+=1. …(4分)
(Ⅱ)證法一:將直線l:y=k(x-1)代入橢圓E的方程
+=1并整理,得(3+4k
2)x
2-8k
2x+4(k
2-3)=0,…(6分)
設(shè)直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),
由根與系數(shù)的關(guān)系,得
x1+x2=,
x1x2=. …(8分)
直線AM的方程為:
y=(x+2),它與直線x=4的交點(diǎn)坐標(biāo)為
P(4,),同理可求得直線BN與直線x=4的交點(diǎn)坐標(biāo)為
Q(4,). …(10分)
下面證明P、Q兩點(diǎn)重合,即證明P、Q兩點(diǎn)的縱坐標(biāo)相等:P
∵y
1=k(x
1-1),y
2=k(x
2-1),
∴
-=6k(x1-1)(x2-2)-2k(x2-1)(x1+2) |
(x1+2)(x2-2) |
=
2k[2x1x2-5(x1+x2)+8] |
(x1+2)(x2-2) |
==0.
因此結(jié)論成立.
綜上可知,直線AM與直線BN的交點(diǎn)在直線x=4上. …(14分)
證法二:將直線l:y=k(x-1),代入橢圓E的方程
+=1并整理,得(3+4k
2)x
2-8k
2x+4(k
2-3)=0,…(6分)
設(shè)直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),
由根與系數(shù)的關(guān)系,得
x1+x2=,
x1x2=. …(8分)
直線AM的方程為:
y=(x+2),即
y=(x+2).
直線BN的方程為:
y=(x-2),即
y=(x-2). …(10分)
由直線AM與直線BN的方程消去y,得
x==2[2x1x2-3(x1+x2)+4x2] |
(x1+x2)+2x2-4 |
=
==4.
∴直線AM與直線BN的交點(diǎn)在直線x=4上. …(14分)
證法三:將直線l:y=k(x-1),代入橢圓方程
+=1并整理,得(3+4k
2)x
2-8k
2x+4(k
2-3)=0,…(6分)
設(shè)直線l與橢圓E的交點(diǎn)M(x
1,y
1),N(x
2,y
2),
由根與系數(shù)的關(guān)系,得
x1+x2=,
x1x2=. …(8分)
消去k
2得,2x
1x
2=5(x
1+x
2)-8. …(10分)
直線AM的方程為:
y=(x+2),即
y=(x+2).
直線BN的方程為:
y=(x-2),即
y=(x-2). …(12分)
由直線AM與直線BN的方程消去y得,
x==2[5(x1+x2)-8-3x1+x2] |
x1+3x2-4 |
=4.
∴直線AM與直線BN的交點(diǎn)在直線x=4上. …(14分)
點(diǎn)評(píng):本小題主要考查橢圓的概念、橢圓的方程等基礎(chǔ)知識(shí),考查待定系數(shù)法、分類與整合、數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及抽象概括能力、運(yùn)算求解能力