設(shè)函數(shù)的定義域?yàn)?img width=17 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/161/408961.gif">,對于任意實(shí)數(shù)、恒有,并且當(dāng)時(shí),

 (1)判斷函數(shù)上的單調(diào)性;

(2)若,求不等式的解集

(1)上是遞減的(2)


解析:

(1)任取,則,此時(shí)。由于時(shí),

 

  …………………………………6分

因此上是遞減的…………………………………7分

(2)由于對任意實(shí)數(shù),均成立,故不等式化為

…………………………………9分

 則

不等式又可化為…………………………………10分

上是減函數(shù),因此 即解集為………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)的定義域?yàn)?i>R,若存在常數(shù),使對一切實(shí)數(shù)均成立,則稱為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①;②;③;④;⑤是定義在實(shí)數(shù)集R上的奇函數(shù),且對一切,均有.其中是“倍約束函數(shù)”的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省瓦房店市五校高二上學(xué)期競賽數(shù)學(xué)理卷 題型:解答題

.(本小題滿分12分)設(shè)函數(shù)的定義域?yàn)镽,當(dāng)時(shí),,且對任意實(shí)數(shù),都有成立,數(shù)列滿足
(1)求的值;
(2)若不等式對一切均成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省高三上學(xué)期第二次段考數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013051114150524056693/SYS201305111415394748877012_ST.files/image002.png">,對任意的實(shí)數(shù)都有;當(dāng)時(shí),,且.(1)判斷并證明上的單調(diào)性;

(2)若數(shù)列滿足:,且,證明:對任意的,

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年遼寧省瓦房店市五校高二上學(xué)期競賽數(shù)學(xué)理卷 題型:解答題

.(本小題滿分12分)設(shè)函數(shù)的定義域?yàn)镽,當(dāng)時(shí),,且對任意實(shí)數(shù),都有成立,數(shù)列滿足

(1)求的值;

(2)若不等式對一切均成立,求的最大值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江西省高三上學(xué)期開學(xué)模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

設(shè)函數(shù)的定義域?yàn)椋?,+∞),且對任意正實(shí)數(shù)x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1時(shí)f(x)>0.

(1)求

(2)判斷y=f(x)在(0,+ ∞)上的單調(diào)性;

(3)一個(gè)各項(xiàng)均為正數(shù)的數(shù)列其中sn是數(shù)列的前n項(xiàng)和,求

 

查看答案和解析>>

同步練習(xí)冊答案