設函數(shù)f(x)的定義域為D,如果存在正實數(shù)k,使對任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)在D上的“k階增函數(shù)”.已知f(x)是定義在R上的奇函數(shù),且當x>0時,x>0時,f(x)=|x-a|-a,其中a為正常數(shù),若f(x)為R上的“2階增函數(shù)”,
則實數(shù)a的取值范圍是( 。
分析:由題意可以得到f(x)=
|x-a|-a,x>0
-|x+a|+a,x<0
,再由定義存在正實數(shù)k,使對任意x∈D,都有x+k∈D,且f(x+k)>f(x)恒成立,則稱函數(shù)f(x)為D上的“k階增函數(shù)”.對所給的問題分自變量全為正,全為負,一正一負三類討論,求出參數(shù)所滿足的共同范圍即可.
解答:解:∵f(x)是定義在R上的奇函數(shù),
且當x>0時,f(x)=|x-a|-a,
f(x)=
|x-a|-a,x>0
-|x+a|+a,x<0
,
又f(x)為R上的“2階增函數(shù)”,
當x>0時,由定義有|x+2-a|-a>|x-a|-a,
即|x+2-a|>|x-a|,其幾何意義為到點a小于到點a-2的距離,
由于x>0故可知a+a-2<0得a<1.
當x<0時,分兩類研究:
①若x+2<0,則有-|x+2+a|+a>-|x+a|+a,
即|x+a|>|x+2+a|,其幾何意義表示到點-a的距離小于到點-a-2的距離,
由于x<0,故可得-a-a-2>0,得a<-1;
②若x+2>0,則有|x+2-a|-a>-|x+a|+a,
即|x+a|+|x+2-a|>2a,其幾何意義表示到到點-a的距離與到點a-2的距離的和大于2a,
當a≤0時,顯然成立,
當a>0時,由于|x+a|+|x+2-a|≥|-a-a+2|=|2a-2|,
故有|2a-2|>2a,必有2-2a>2a,解得a<
1
2
,
綜上,對x∈R都成立的實數(shù)a的取值范圍是a<
1
2

故選C.
點評:本題考查奇偶性與單調性的綜合,解題的關鍵是根據(jù)函數(shù)的奇函數(shù)的性質求出函數(shù)的解析式,理解本題中所給的定義,以及根據(jù)函數(shù)解析式對問題分為三部分來求解,最后求出三部分中的公共部分的取值范圍作為實數(shù)a的取值范圍是本題中的一個疑點,也是易錯點,一般分類求解都是求并集,而本題因為是研究的定義域各個部分上成立的參數(shù)的范圍,故在整個定義域上都成立的參數(shù)的范圍應該是三部分中都成立的范圍的公共部分,對此邏輯關系一定要理解清楚.題后可以找一些分類討論的題對比著題設條件好好理解領會一下.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-
3
2
)與b=f(
15
2
)的大小關系為
a>b
a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為D,若對于任意x1,x2∈D,當x1<x2時,都有f(x1)≤f(x2),則稱函數(shù)f(x)在D上為非減函數(shù).設函數(shù)f(x)為定義在[0,1]上的非減函數(shù),且滿足以下三個條件:①f(0)=0;②f(1-x)+f(x)=1,x∈[0,1]; ③當x∈[0,
1
4
]
時,f(x)≥2x恒成立.則f(
3
7
)+f(
5
9
)
=
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-數(shù)學公式)與b=f(數(shù)學公式)的大小關系為________.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年安徽省蚌埠二中高三(上)12月月考數(shù)學試卷(文科)(解析版) 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x-cosx,則a=f(-)與b=f()的大小關系為   

查看答案和解析>>

科目:高中數(shù)學 來源:山東省月考題 題型:填空題

設函數(shù)f(x)的定義在R上的偶函數(shù),且是以4為周期的周期函數(shù),當x∈[0,2]時,f(x)=2x﹣cosx,則a=f(﹣)與b=f()的大小關系為(    ).

查看答案和解析>>

同步練習冊答案