設(shè)函數(shù)f(x)=sin(2x+
π
3
),現(xiàn)有下列結(jié)論:
(1)f(x)的圖象關(guān)于直線x=
π
3
對稱;
(2)f(x)的圖象關(guān)于點(diǎn)(
π
4
,0)對稱
(3)把f(x)的圖象向左平移
π
12
個單位,得到一個偶函數(shù)的圖象;
(4)f(x)的最小正周期為π,且在[0,
π
6
]上為增函數(shù).
其中正確的結(jié)論有______(把你認(rèn)為正確的序號都填上)
根據(jù)正弦函數(shù)的性質(zhì)可知f(x)=sin(2x+
π
3
)的對稱軸為2x+
π
3
=kπ+
π
2
(k∈Z),即x=
π
12
+
2
(k∈Z)∴直線x=
π
3
不是函數(shù)f(x)的對稱軸,結(jié)論(1)錯誤
根據(jù)正弦函數(shù)的性質(zhì)可知f(x)=sin(2x+
π
3
)的對稱中心橫坐標(biāo)為2x+
π
3
=kπ,即x=
2
-
π
6
,∴點(diǎn)(
π
4
,0)不是函數(shù)的對稱中心.結(jié)論(2)錯誤.
f(x)的圖象向左平移
π
12
個單位,得f(x)=sin(2x+
π
2
)=cos2x,為偶函數(shù),∴結(jié)論(3)正確.
f(x)的最小正周期為π,且2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
時,即kπ-
5
6
π≤x≤kπ+
π
12
函數(shù)單調(diào)增,∴結(jié)論(4)不正確.
故答案為(3)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)其中,,
(1)若的值;                  
(2)在(1)的條件下,若函數(shù)的圖象的相鄰兩條對稱軸之間的距離等于,求函數(shù)的解析式;并求最小正實數(shù),使得函數(shù)的圖象向左平移個單位所對應(yīng)的函數(shù)是偶函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)的定義域為,值域為.試求函數(shù))的最小正周期和最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=sinx(
π
6
≤x≤
2
3
π)的值域為( 。
A.[
1
2
,1]
B.[-1,1]C.[
1
2
,
3
2
]
D.[
3
2
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知ω>0,函數(shù)f(x)=cos(ωx+
π
4
)
(
π
2
,π)
上單調(diào)遞減.則ω的取值范圍是( 。
A.[
1
2
,
5
4
]
B.[
1
2
,
3
4
]
C.(0,
3
4
]
D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若α,β都是第一象限角,且α<β,那么( 。
A.sinα>sinβB.sinβ>sinα
C.sinα≥sinβD.sinα與sinβ的大小不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=tan(2x-
π
4
)
的周期是(  )
A.πB.
π
2
C.
π
4
D.2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖為f(x)=Asin(ωx+ϕ)(A>0,?>0,ϕ∈(-π,0))的圖象的一段,
(Ⅰ)求其解析式.
(Ⅱ)將f(x)圖象上所有的點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)放大到原來的2倍,然后再將新的圖象向左平移
π
2
個單位,得到函數(shù)g(x)的圖象,求函數(shù)g(x)在x∈[0,
π
2
]
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知
a
=(cosx,sinx),
b
=(sinx,cosx),與f(x)=
a
b
要得到函數(shù)y=sin4x-cos4x的圖象,只需將函數(shù)y=f(x)的圖象( 。
A.向左平移
π
2
個單位長度
B.向右平移
π
2
個單位長度
C.向左平移
π
4
個單位長度
D.向右平移
π
4
個單位長度

查看答案和解析>>

同步練習(xí)冊答案