已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2sin θ.

(1)C1的參數(shù)方程化為極坐標(biāo)方程;

(2)C1C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π)

 

1ρ28ρcos θ10ρsin θ1602,

【解析】(1)C1的參數(shù)方程為..

(x4)2(y5)225(cos2tsin2t)25,

C1的直角坐標(biāo)方程為(x4)2(y5)225,

xρcos θyρsin θ代入(x4)2(y5)225,

化簡得:ρ28ρcos θ10ρsin θ160.

(2)C2的直角坐標(biāo)方程為x2y22y,

解方程組 ?,

C1C2交點(diǎn)的直角坐標(biāo)為(1,1),(0,2)

C1C2交點(diǎn)的極坐標(biāo)為,.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:填空題

設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,且S9S2,S44S2,則數(shù)列{an}的通項(xiàng)公式為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:填空題

已知函數(shù)f(x),若函數(shù)g(x)f(x)k有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:解答題

已知ab0,求證:2a3b3≥2ab2a2b.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:選擇題

設(shè)a,bc,xy,z均為正數(shù),且a2b2c210,x2y2z240axbycz20,則等于(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:填空題

在極坐標(biāo)系中,點(diǎn)到直線ρsin θ2的距離等于________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy設(shè)橢圓4x2y21在矩陣A對(duì)應(yīng)的變換下得到曲線F,F的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:填空題

某種產(chǎn)品的廣告費(fèi)支出x與銷售額y之間有如下對(duì)應(yīng)數(shù)據(jù)(單位:百萬元).

x

2

4

5

6

8

y

30

40

60

t

70

根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為6.5x17.5,則表中t的值為________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:解答題

已知橢圓1上任一點(diǎn)P,由點(diǎn)Px軸作垂線PQ,垂足為Q設(shè)點(diǎn)MPQ,2點(diǎn)M的軌跡為C.

(1)求曲線C的方程;

(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足 (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案