已知曲線C1的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=2sin θ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).
(1)ρ2-8ρcos θ-10ρsin θ+16=0(2),
【解析】(1)∵C1的參數(shù)方程為.∴.
∴(x-4)2+(y-5)2=25(cos2t+sin2t)=25,
即C1的直角坐標(biāo)方程為(x-4)2+(y-5)2=25,
把x=ρcos θ,y=ρsin θ代入(x-4)2+(y-5)2=25,
化簡得:ρ2-8ρcos θ-10ρsin θ+16=0.
(2)C2的直角坐標(biāo)方程為x2+y2=2y,
解方程組 ?,得或
∴C1與C2交點(diǎn)的直角坐標(biāo)為(1,1),(0,2).
∴C1與C2交點(diǎn)的極坐標(biāo)為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)4-1等差數(shù)列與等比數(shù)列練習(xí)卷(解析版) 題型:填空題
設(shè)數(shù)列{an}是公差不為零的等差數(shù)列,Sn是數(shù)列{an}的前n項(xiàng)和,且S=9S2,S4=4S2,則數(shù)列{an}的通項(xiàng)公式為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)=,若函數(shù)g(x)=f(x)-k有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)k的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:解答題
已知a≥b>0,求證:2a3-b3≥2ab2-a2b.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-5練習(xí)卷(解析版) 題型:選擇題
設(shè)a,b,c,x,y,z均為正數(shù),且a2+b2+c2=10,x2+y2+z2=40,ax+by+cz=20,則等于( ).
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:填空題
在極坐標(biāo)系中,點(diǎn)到直線ρsin θ=2的距離等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-2練習(xí)卷(解析版) 題型:解答題
在平面直角坐標(biāo)系xOy中,設(shè)橢圓4x2+y2=1在矩陣A=對(duì)應(yīng)的變換下得到曲線F,求F的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:填空題
某種產(chǎn)品的廣告費(fèi)支出x與銷售額y之間有如下對(duì)應(yīng)數(shù)據(jù)(單位:百萬元).
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | t | 70 |
根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程為 =6.5x+17.5,則表中t的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-2練習(xí)卷(解析版) 題型:解答題
已知橢圓=1上任一點(diǎn)P,由點(diǎn)P向x軸作垂線PQ,垂足為Q,設(shè)點(diǎn)M在PQ上,且=2,點(diǎn)M的軌跡為C.
(1)求曲線C的方程;
(2)過點(diǎn)D(0,-2)作直線l與曲線C交于A、B兩點(diǎn),設(shè)N是過點(diǎn)且平行于x軸的直線上一動(dòng)點(diǎn),且滿足=+ (O為原點(diǎn)),且四邊形OANB為矩形,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com