【題目】已知橢圓的短軸長(zhǎng)為2離心率為

(1)求橢圓C的方程;

(2)設(shè)過(guò)點(diǎn)M(2,0)的直線(xiàn)l與橢圓C相交于A,B兩點(diǎn),F(xiàn)1為橢圓的左焦點(diǎn).

若B點(diǎn)關(guān)于x軸的對(duì)稱(chēng)點(diǎn)是N,證明:直線(xiàn)AN恒過(guò)一定點(diǎn);

試求橢圓C上是否存在點(diǎn)P,使F1APB為平行四邊形?若存在,求出F1APB的面積,若不存在,請(qǐng)說(shuō)明理由.

【答案】(1)定點(diǎn);(2)

【解析】試題分析:(1)由短軸長(zhǎng)和離心率可以求得,從而得到橢圓的方程.(2)設(shè)出,則直線(xiàn)的方程為: ,利用在直線(xiàn)上,直線(xiàn)的方程又可以轉(zhuǎn)化為,聯(lián)立方程組并消去,利用韋達(dá)定理把直線(xiàn)的方程化簡(jiǎn)為,從而得到直線(xiàn)過(guò)定點(diǎn).(3)中設(shè)出,因、互相平分,故可用表示,最后利用在橢圓上求出的大小,從而求出平行四邊形的面積

解析:1)∵橢圓的短軸長(zhǎng)為2,∴,解得,∵離心率為 , ,解得,∴橢圓的方程為

(2)證明:①設(shè)過(guò)的直線(xiàn),聯(lián)立,得,∵直線(xiàn)與橢圓交于兩點(diǎn),∴,即

設(shè),則 點(diǎn)關(guān)于 軸的對(duì)稱(chēng)點(diǎn)是 ,∴ 設(shè)直線(xiàn),∵滿(mǎn)足直線(xiàn),∴

∴直線(xiàn) 過(guò)定點(diǎn)

(2)橢圓左焦點(diǎn) ,設(shè)的中點(diǎn) , ,假設(shè)存在點(diǎn)使為平行四邊形,則 的中點(diǎn),, ,即 ,在橢圓上,∴ 整理得 ,解得(舍),此時(shí),

左焦點(diǎn)直線(xiàn)的距離,∴平行四邊形的面積

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax+ +2﹣2a(a>0)的圖象在點(diǎn)(1,f(1))處的切線(xiàn)與直線(xiàn)y=2x+1平行.
(1)求a,b滿(mǎn)足的關(guān)系式;
(2)若f(x)≥2lnx在[1,+∞)上恒成立,求a的取值范圍;
(3)證明:1+ + +…+ (2n+1)+ (n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將一副三角板拼接,使它們有公共邊BC,且使兩個(gè)三角形所在的平面互相垂直,若

∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6。

⑴ 求證:平面平面ACD;

⑵ 求二面角的平面角的正切值;

⑶ 設(shè)過(guò)直線(xiàn)AD且與BC平行的平面為,求點(diǎn)B到平面的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是偶函數(shù).

(1)求證:是偶函數(shù);

(2)求證:上是增函數(shù);

(3)設(shè),且),若對(duì)任意的,在區(qū)間上總存在兩個(gè)不同的數(shù),使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)經(jīng)過(guò)點(diǎn),且斜率為

(I)求直線(xiàn)的方程;

)若直線(xiàn)平行,且點(diǎn)P到直線(xiàn)的距離為3,求直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】制定投資計(jì)劃時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個(gè)項(xiàng)目.根據(jù)預(yù)測(cè),甲、乙項(xiàng)目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計(jì)劃投資金額不超過(guò)10萬(wàn)元,要求確保可能的資金虧損不超過(guò)1.8萬(wàn)元.問(wèn)投資人對(duì)甲、乙兩個(gè)項(xiàng)目各投資多少萬(wàn)元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲、乙兩地某月14時(shí)的氣溫情況,隨機(jī)選取該月中的5天,將這5天中14時(shí)的氣溫?cái)?shù)據(jù)(單位:℃)制成如圖所示的莖葉圖,考慮以下結(jié)論:

①甲地該月14時(shí)的平均氣溫低于乙地該月14時(shí)的平均氣溫;

②甲地該月14時(shí)的平均氣溫高于乙地該月14時(shí)的平均氣溫;

③甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差小于乙地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差;

④甲地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差大于乙地該月14時(shí)的平均氣溫的標(biāo)準(zhǔn)差,

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的編號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是現(xiàn)代生活進(jìn)行信息交流的重要工具,據(jù)統(tǒng)計(jì),某公司名員工中的人使用微信,其中每天使用微信時(shí)間在一小時(shí)以?xún)?nèi)的有人,其余每天使用微信在一小時(shí)以上.若將員工年齡分成青年(年齡小于歲)和中年(年齡不小于歲)兩個(gè)階段,使用微信的人中是青年人.若規(guī)定:每天使用微信時(shí)間在一小時(shí)以上為經(jīng)常使用微信,經(jīng)常使用微信的員工中是青年人.

)若要調(diào)查該公司使用微信的員工經(jīng)常使用微信與年齡的關(guān)系,列出列聯(lián)表;


青年人

中年人

合計(jì)

經(jīng)常使用微信




不經(jīng)常使用微信




合計(jì)




)由列聯(lián)表中所得數(shù)據(jù),是否有的把握認(rèn)為經(jīng)常使用微信與年齡有關(guān)?

)采用分層抽樣的方法從經(jīng)常使用微信的人中抽取人,從這人中任選人,求事件 選出的人均是青年人的概率.

附:







查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)在第一象限內(nèi)的點(diǎn)到焦點(diǎn)的距離為

(1)若,過(guò)點(diǎn), 的直線(xiàn)與拋物線(xiàn)相交于另一點(diǎn),求的值;

(2)若直線(xiàn)與拋物線(xiàn)相交于兩點(diǎn),與圓相交于兩點(diǎn), 為坐標(biāo)原點(diǎn), ,試問(wèn):是否存在實(shí)數(shù),使得的長(zhǎng)為定值?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案