已知集合數(shù)學(xué)公式,集合B={ x|x2-(2m+1)x+m2+m<0}
(1)求集合A、B;
(2)若B⊆A,求m的取值范圍.

解:(1)由集合A中的不等式:,?-2≤x<2,即A={x|-2≤x<2};
由集合B中的不等式:x2-(2m+1)x+m2+m<0?(x-m)[x-m+1)]<0?m<x<m+1,即B={x|m<x<m+1};
(2)B⊆A?-2≤m≤1.
分析:(1)把集合A中的不等式移項(xiàng)右邊變?yōu)?,左邊通分后,轉(zhuǎn)化為x+2與x-2異號(hào),求出不等式的解集即可得到集合A;集合B中的不等式的左邊分解因式后,得到x-m與x-m+1異號(hào),即可求出x的范圍得到集合B;
(2)根據(jù)集合B是集合A的子集,得到集合A包含集合B,利用兩集合的解集即可列出關(guān)于m的不等式組,求出不等式組的解集即可得到m的取值范圍.
點(diǎn)評(píng):此題考查了一元二次不等式的解法,考查了兩集合包含關(guān)系的應(yīng)用,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•廣東模擬)已知集合A={(x,y)|0≤y≤sinx,0≤x≤π},集合B={(x,y)|(x-2)2+(y-2)2≤8},在集合B中任意取一點(diǎn)P,則P∈A的概率是
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(北京卷) 題型:044

已知集合A={a1,a2,…ax}(k≥2),其中,由中的元素構(gòu)成兩個(gè)相應(yīng)的集合:,.其中(a,b)是有序數(shù)對(duì),集合S和T中的元素個(gè)數(shù)分別為m和n.若對(duì)于任意的,總有,則稱集合A具有性質(zhì)P.

(1)

檢驗(yàn)集合{0,1,2,3}與{-1,2,3}是否具有性質(zhì)P并對(duì)其中具有性質(zhì)P的集合,寫出相應(yīng)的集合S和T;

(2)

對(duì)任何具有性質(zhì)P的集合A,證明:;

(3)

判斷m和n的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為


  1. A.
    1
  2. B.
    2
  3. C.
    3
  4. D.
    4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)綜合訓(xùn)練試卷(08)(解析版) 題型:選擇題

已知集合A,B,全集∪,給出下列四個(gè)命題
(1)若A⊆B,則A∪B=B;
(2)若A∪B=B,則A∩B=B;
(3)若a∈(A∩CUB),則a∈A;
(4)若a∈CU(A∩B),則a∈(A∪B).
則上述正確命題的個(gè)數(shù)為( )
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案