用長度為20m的籬笆圍建一個一面靠墻的矩形雞舍,且雞舍內(nèi)用相同的籬笆隔成三間(如圖所示),如果挨著墻的邊長為x,雞舍面積為y
(1)請把y表示成x的函數(shù);
(2)當(dāng)x為何值時,函數(shù)取最大值,并求出最大值.
考點:基本不等式在最值問題中的應(yīng)用
專題:應(yīng)用題,不等式的解法及應(yīng)用
分析:(1)由題意,矩形的寬為
20-x
4
,可得y表示成x的函數(shù);
(2)利用基本不等式,即可得出結(jié)論.
解答: 解:(1)由題意,矩形的寬為
20-x
4
,
∴雞舍面積為y=x•
20-x
4
(0<x<20);
(2)y=x•
20-x
4
1
4
(
x+20-x
2
)2
=25
當(dāng)且僅當(dāng)x=20-x,即x=10m時,面積最大為25m2
點評:本題考查利用數(shù)學(xué)知識解決實際問題,考查基本不等式 的運用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的個數(shù)是(  )
①平行于同一直線的兩條直線平行    
②平行于同一平面的兩個平面平行
③兩條平行線中的一條和一個平面平行,則另一條也與這個平面平行
④一條直線與兩個平行平面中的一個平面平行,則這條直線與另一平面也平行.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
b
x
-2a+2(a>0)的圖象在點(1,f(1))處的切線與直線y=2x+1平行.
(Ⅰ)求log4(a-b)的值;
(Ⅱ)若f(x)-2lnx≥0在[1,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,a1=2且a2,a4,a8成等比數(shù)列,若bn=
2
n(an+2)
,則數(shù)列{bn}的前n項和的取值范圍是(  )
A、[
1
2
,1)
B、(0,1)
C、(0,
1
2
]
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1=1,a3=-3.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-35,求k的值;
(3)設(shè)bn=2n•an,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-2sinx在[0,π]上的遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)m為常數(shù),點F(5,0)是雙曲線
x2
9
-
y2
m
=1的一個焦點,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2
(1)設(shè)bn=an+1-2an,證明數(shù)列{bn}是等比數(shù)列;
(2)令cn=
an
2n-1
,求cn及數(shù)列an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的短軸為2
3
,左、右焦點分別為F1、F2,點P在橢圓上,且滿足△PF1F2的周長為6.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線l與橢圓交于A、B兩點,△ABO面積為
3
,判斷|OA|2+|OB|2是否為定值?若為定值,求出定值;若不為定值,說明理由.

查看答案和解析>>

同步練習(xí)冊答案