【題目】干支歷法是上古文明的產(chǎn)物,又稱(chēng)節(jié)氣歷或中國(guó)陽(yáng)歷,是一部深?yuàn)W的歷法.它是用60組各不相同的天干地支標(biāo)記年月日時(shí)的歷法.具體的算法如下:先用年份的尾數(shù)查出天干,如2013年3為癸;再用2013年除以12余數(shù)為9,9為巳.那么2013年就是癸巳年了,
天干 | 甲 | 乙 | 丙 | 丁 | 戊 | 己 | 庚 | 辛 | 壬 | 癸 | ||
4 | 5 | 6 | 7 | 8 | 9 | 0 | 1 | 2 | 3 | |||
地支 | 子 | 丑 | 寅 | 卯 | 辰 | 巳 | 午 | 未 | 申 | 酉 | 戌 | 亥 |
4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 |
2020年高三應(yīng)屆畢業(yè)生李東是壬午年出生,李東的父親比他大25歲.問(wèn)李東的父親是哪一年出生( )
A.甲子B.乙丑C.丁巳D.丙卯
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了有效地加強(qiáng)高中生自主管理能力,推出了一系列措施,其中自習(xí)課時(shí)間的自主管理作為重點(diǎn)項(xiàng)目,學(xué)校有關(guān)處室制定了“高中生自習(xí)課時(shí)間自主管理方案”.現(xiàn)準(zhǔn)備對(duì)該“方案”進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”,調(diào)查人員分別在各個(gè)年級(jí)隨機(jī)抽取若干學(xué)生對(duì)該“方案”進(jìn)行評(píng)分,并將評(píng)分分成,,,七組,繪制成如圖所示的頻率分布直方圖.
相關(guān)規(guī)則為①采用百分制評(píng)分,內(nèi)認(rèn)定為對(duì)該“方案”滿意,不低于80分認(rèn)定為對(duì)該“方案”非常滿意,60分以下認(rèn)定為對(duì)該“方案”不滿意;②學(xué)生對(duì)“方案”的滿意率不低于即可啟用該“方案”;③用樣本的頻率代替概率.
(1)從該校學(xué)生中隨機(jī)抽取1人,求被抽取的這位同學(xué)非常滿意該“方案”的概率,并根據(jù)頻率分布直方圖求學(xué)生對(duì)該“方案”評(píng)分的中位數(shù).
(2)根據(jù)所學(xué)統(tǒng)計(jì)知識(shí),判斷該校是否啟用該“方案”,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)(i)若恒成立,求的取值范圍;
(i i)當(dāng)時(shí),證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角梯形中,,,平面平面,,,分別在線段和上,且,是等腰直角三角形.
(1)若,求證:平面.
(2),是否存在,使得與平面所成的角的正弦值為?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),共享單車(chē)在我國(guó)各城市迅猛發(fā)展,為人們的出行提供了便利,但也給城市的交通管理帶來(lái)了一些困難,為掌握共享單車(chē)在省的發(fā)展情況,某調(diào)查機(jī)構(gòu)從該省抽取了5個(gè)城市,并統(tǒng)計(jì)了共享單車(chē)的指標(biāo)和指標(biāo),數(shù)據(jù)如下表所示:
城市1 | 城市2 | 城市3 | 城市4 | 城市5 | |
指標(biāo) | 2 | 4 | 5 | 6 | 8 |
指標(biāo) | 3 | 4 | 4 | 4 | 5 |
(1)試求與間的相關(guān)系數(shù),并說(shuō)明與是否具有較強(qiáng)的線性相關(guān)關(guān)系(若,則認(rèn)為與具有較強(qiáng)的線性相關(guān)關(guān)系,否則認(rèn)為沒(méi)有較強(qiáng)的線性相關(guān)關(guān)系).
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)當(dāng)指標(biāo)為7時(shí),指標(biāo)的估計(jì)值.
(3)若某城市的共享單車(chē)指標(biāo)在區(qū)間的右側(cè),則認(rèn)為該城市共享單車(chē)數(shù)量過(guò)多,對(duì)城市的交通管理有較大的影響交通管理部門(mén)將進(jìn)行治理,直至指標(biāo)在區(qū)間內(nèi)現(xiàn)已知省某城市共享單車(chē)的指標(biāo)為13,則該城市的交通管理部門(mén)是否需要進(jìn)行治理?試說(shuō)明理由.
參考公式:回歸直線中斜率和截距的最小二乘估計(jì)分別為
,,相關(guān)系數(shù)
參考數(shù)據(jù):,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全面建成小康社會(huì)的決勝階段,讓貧困地區(qū)同全國(guó)人民共同進(jìn)入全面小康社會(huì)是我們黨的莊嚴(yán)承諾.在“脫真貧、真脫貧”的過(guò)程中,精準(zhǔn)扶貧助推社會(huì)公平顯得尤其重要.若某農(nóng)村地區(qū)有200戶貧困戶,經(jīng)過(guò)一年扶貧后,對(duì)該地區(qū)的“精準(zhǔn)扶貧”的成效檢查驗(yàn)收.從這200戶貧困戶中隨機(jī)抽出50戶,對(duì)各戶的人均年收入(單位:千元)進(jìn)行調(diào)查得到如下頻數(shù)表:
人均年收入 | ||||||
頻數(shù) | 2 | 3 | 10 | 20 | 10 | 5 |
若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達(dá)到8000元的判定為小康戶.
(1)用樣本估計(jì)總體,估計(jì)該地區(qū)還有多少戶沒(méi)有脫貧;
(2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進(jìn)行調(diào)研.
①貧困戶、脫貧戶、小康戶分別抽到的人數(shù)是多少?
②從被抽到的脫貧戶和小康戶中各選1人做經(jīng)驗(yàn)介紹,求小康戶中人均年收入最高的一戶被選到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,平面ABC是下底面.M是BB1上的點(diǎn),AB=3,BC=4,AC=5,CC1=7,過(guò)三點(diǎn)A、M、C1作截面,當(dāng)截面周長(zhǎng)最小時(shí),截面將三棱柱分成的上、下兩部分的體積比為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】據(jù)相關(guān)數(shù)據(jù)統(tǒng)計(jì),2019年底全國(guó)已開(kāi)通基站13萬(wàn)個(gè),部分省市的政府工作報(bào)告將“推進(jìn)通信網(wǎng)絡(luò)建設(shè)”列入2020年的重點(diǎn)工作,今年一月份全國(guó)共建基站3萬(wàn)個(gè).
(1)如果從2月份起,以后的每個(gè)月比上一個(gè)月多建設(shè)2000個(gè),那么,今年底全國(guó)共有基站多少萬(wàn)個(gè).(精確到0.1萬(wàn)個(gè))
(2)如果計(jì)劃今年新建基站60萬(wàn)個(gè),到2022年底全國(guó)至少需要800萬(wàn)個(gè),并且,今后新建的數(shù)量每年比上一年以等比遞增,問(wèn)2021年和2022年至少各建多少萬(wàn)個(gè)オ能完成計(jì)劃?(精確到1萬(wàn)個(gè))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓的左、右焦點(diǎn)分別為、,,是軸的正半軸上一點(diǎn),交橢圓于,且,的內(nèi)切圓半徑為1.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)為圓上一點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com