【題目】已知為數(shù)列的前n項(xiàng)和,,當(dāng)n≥2時,,又

(1)求數(shù)列的通項(xiàng)公式;

(2)設(shè)數(shù)列落在區(qū)間內(nèi)的項(xiàng)數(shù)為,求數(shù)列的前n項(xiàng)和

【答案】(1) an=n;(2)(n﹣1)2n+1.

【解析】

(1)直接利用遞推關(guān)系式求出數(shù)列的通項(xiàng)公式;(2)利用(1)的結(jié)論,進(jìn)一步利用乘公比錯位相減法求出數(shù)列的和.

(1)已知Sn為數(shù)列{an}的前n項(xiàng)和,a1=1,當(dāng)n≥2時,an﹣1=2an﹣an+1,

即:2an=an﹣1+an+1,

所以數(shù)列{an}為等差數(shù)列.

=,

解得:an=n.

(2)數(shù)列{an}落在區(qū)間內(nèi)的項(xiàng)數(shù)為bk,

所以:第一項(xiàng)為2k﹣1,最后一項(xiàng)為2k﹣1,

所以

則:,

所以(n﹣1)2n﹣2+n2n﹣1,①

(n﹣1)2n﹣1+n2n②,

①﹣②得:

﹣Tn=(10+21+22+…+2n)﹣n2n,

整理得:

=(n﹣1)2n+1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面,.

(Ⅰ)求證:平面;

(Ⅱ)求直線與平面所成角的正弦值;

(Ⅲ)若二面角的余弦值為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知

(1)設(shè)上的一點(diǎn),證明:平面平面;

(2)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,已知曲線的參數(shù)方程為 為參數(shù)以原點(diǎn)為極點(diǎn)x軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為:,直線的極坐標(biāo)方程為

Ⅰ)寫出曲線的極坐標(biāo)方程,并指出它是何種曲線;

Ⅱ)設(shè)與曲線交于兩點(diǎn),與曲線交于兩點(diǎn),求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△中, , 分別為, 的中點(diǎn), 的中點(diǎn), , 將△沿折起到△的位置,使得平面平面, 的中點(diǎn),如圖2

1求證: 平面;

2求證:平面平面

3線段上是否存在點(diǎn),使得平面?說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】雙一流大學(xué)就業(yè)部從該校2018年已就業(yè)的大學(xué)本科畢業(yè)生中隨機(jī)抽取了100人進(jìn)行問卷調(diào)查,其中一項(xiàng)是他們的月薪收入情況,調(diào)查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計(jì)數(shù)據(jù)分組,得到如下的頻率分布直方圖:

1)將同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表,求這100人月薪收入的樣本平均數(shù)

2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學(xué)聯(lián)誼會,并收取一定的活動費(fèi)用,有兩種收費(fèi)方案:

方案一:設(shè)區(qū)間,月薪落在區(qū)間左側(cè)的每人收取400元,月薪落在區(qū)間內(nèi)的每人收取600元,月薪落在區(qū)間右側(cè)的每人收取800元;

方案二:每人按月薪收入的樣本平均數(shù)的收取;

用該校就業(yè)部統(tǒng)計(jì)的這100人月薪收入的樣本頻率進(jìn)行估算,哪一種收費(fèi)方案能收到更多的費(fèi)用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是______(填序號).

①有兩個面互相平行,其余各面都是四邊形的幾何體是棱柱;

②有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱;

③有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;

④用一個平面去截棱錐,棱錐底面和截面之間那部分的幾何體是棱臺;

⑤存在一個四棱錐,其四個側(cè)面都是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知函數(shù),.

1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間;

2)當(dāng)時,求的取值范圍;

3)是否存在實(shí)數(shù)ab, 使得函數(shù)上的值域也是?若存在,求出a,b的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),若在曲線上存在點(diǎn)使得,則實(shí)數(shù)的取值范圍為__________

查看答案和解析>>

同步練習(xí)冊答案