【題目】如圖,設(shè)拋物線的準(zhǔn)線軸交于橢圓的右焦點(diǎn)的左焦點(diǎn).橢圓的離心率為,拋物線與橢圓交于軸上方一點(diǎn),連接并延長其交于點(diǎn), 上一動(dòng)點(diǎn),且在之間移動(dòng).

(1)當(dāng)取最小值時(shí),求的方程;

(2)若的邊長恰好是三個(gè)連續(xù)的自然數(shù),當(dāng)面積取最大值時(shí),求面積最大值以及此時(shí)直線的方程.

【答案】(1)(2)的面積最大值為.此時(shí)

【解析】試題分析:(1)由橢圓的性質(zhì)可得,故可得,故而可求得的方程;(2)因?yàn)?/span>,則,設(shè)橢圓的標(biāo)準(zhǔn)方程為,聯(lián)立拋物線與橢圓的方程可得,得代入拋物線方程得,可得,可得直線與拋物線的方程,聯(lián)立得,求出點(diǎn)到直線的距離,結(jié)合面積公式可得最值.

試題解析:(1)因?yàn)?/span>,則,所以取最小值時(shí),

此時(shí)拋物線,此時(shí),所以橢圓的方程為;

(2)因?yàn)?/span>,則,設(shè)橢圓的標(biāo)準(zhǔn)方程為,

,所以(舍去),代入拋物線方程得,即

于是,又的邊長恰好是三個(gè)連續(xù)的自然數(shù),所以.此時(shí)拋物線方程為, ,則直線的方程為.聯(lián)立,得(舍去),于是.所以

設(shè)到直線的距離為,則,當(dāng)時(shí), ,所以的面積最大值為.此時(shí)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某省電視臺(tái)為了解該省衛(wèi)視一檔成語類節(jié)目的收視情況,抽查東西兩部各5個(gè)城市,得到觀看該節(jié)目的人數(shù)(單位:千人)如下莖葉圖所示:

其中一個(gè)數(shù)字被污損.

(1)求東部各城市觀看該節(jié)目觀眾平均人數(shù)超過西部各城市觀看該節(jié)目觀眾平均人數(shù)的概率.

(2)隨著節(jié)目的播出,極大激發(fā)了觀眾對(duì)成語知識(shí)的學(xué)習(xí)積累的熱情,從中獲益匪淺.現(xiàn)從觀看該節(jié)目的觀眾中隨機(jī)統(tǒng)計(jì)了4位觀眾的周均學(xué)習(xí)成語知識(shí)的時(shí)間(單位:小時(shí))與年齡(單位:歲),并制作了對(duì)照表(如下表所示)

年齡(歲)

20

30

40

50

周均學(xué)習(xí)成語知識(shí)時(shí)間(小時(shí))

2.5

3

4

4.5

由表中數(shù)據(jù),試求線性回歸方程,并預(yù)測年齡為55歲觀眾周均學(xué)習(xí)成語知識(shí)時(shí)間.

參考公式: , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】.(本小題滿分12分)

如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F分別為PCBD的中點(diǎn),側(cè)面PAD⊥底面ABCD,且PA=PD=AD.

)求證:EF//平面PAD;

)求三棱錐C—PBD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正三棱錐,已知,

(1)求此三棱錐內(nèi)切球的半徑.

(2)若是側(cè)面上一點(diǎn),試在面上過點(diǎn)畫一條與棱垂直的線段,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2x ,
(1)判斷函數(shù)的奇偶性;
(2)用函數(shù)單調(diào)性定義證明:f(x)在(0,+∞)上為單調(diào)增函數(shù);
(3)若f(x)=52x+3,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱中,側(cè)面為菱形,

(1)證明: ;

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有道數(shù)學(xué)題,其中道選擇題, 道填空題,小明從中任取道題,求

1)所取的道題都是選擇題的概率;

2)所取的道題不是同一種題型的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足:

(1)求數(shù)列的通項(xiàng)公式;

(2)若,數(shù)列的前項(xiàng)和為 , 成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一段圓錐曲線,曲線與兩個(gè)坐標(biāo)軸的交點(diǎn)分別是, .

Ⅰ)若該曲線表示一個(gè)橢圓,設(shè)直線過點(diǎn)且斜率是,求直線與這個(gè)橢圓的公共點(diǎn)的坐標(biāo).

Ⅱ)若該曲線表示一段拋物線,求該拋物線的方程.

查看答案和解析>>

同步練習(xí)冊答案