(本小題滿分13分)已知函數(shù),.
(Ⅰ)設(其中是的導函數(shù)),求的最大值;
(Ⅱ)求證: 當時,有;
(Ⅲ)設,當時,不等式恒成立,求的最大值.
(Ⅰ)當時,取得最大值;
(Ⅱ)當時,.由(1)知:當時,,即.
因此,有.
(Ⅲ)整數(shù)的最大值是.
解析試題分析:(Ⅰ),所以 .
當時,;當時,.
因此,在上單調(diào)遞增,在上單調(diào)遞減.
因此,當時,取得最大值; ………………3分
(Ⅱ)當時,.由(1)知:當時,,即.
因此,有.………………7分
(Ⅲ)不等式化為所以
對任意恒成立.令,則,
令,則,所以函數(shù)在上單調(diào)遞增.
因為,
所以方程在上存在唯一實根,且滿足.
當,即,當,即,
所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.
所以.
所以.故整數(shù)的最大值是. ……………13分
考點:本題主要考查了導數(shù)的運算、導數(shù)在函數(shù)單調(diào)性及不等式中的應用。
點評:較難題,利用導數(shù)求函數(shù)單調(diào)區(qū)間的方法,解題時注意函數(shù)的定義域,避免出錯。
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若曲線在和處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設,若對任意,均存在,使得,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)
把邊長為的等邊三角形鐵皮剪去三個相同的四邊形(如圖陰影部分)后,用剩余部分做成一個無蓋的正三棱柱形容器(不計接縫),設容器的高為,容積為.
(Ⅰ)寫出函數(shù)的解析式,并求出函數(shù)的定義域;
(Ⅱ)求當x為多少時,容器的容積最大?并求出最大容積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(14分)已知函數(shù),其中常數(shù)。
(1)當時,求函數(shù)的單調(diào)遞增區(qū)間;
(2)當時,是否存在實數(shù),使得直線恰為曲線的切線?若存在,求出的值;若不存在,說明理由;
(3)設定義在上的函數(shù)的圖象在點處的切線方程為,當時,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”。當,試問是否存在“類對稱點”?若存在,請至少求出一個“類對稱點”的橫坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分15分)已知函數(shù).
(1)若函數(shù)的值域為,求a的值;
(2)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)。
(1)求函數(shù)的定義域;
(2)判斷函數(shù)的奇偶性;
(3)討論函數(shù)的單調(diào)性(不用證明)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com