二次函數(shù)的零點

二次函數(shù)y=ax2+bx+c(a≠0).

(1)Δ>0,方程ax2+bx+c=0有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有________個零點.

(2)Δ=0,方程ax2+bx+c=0有兩相等實根(二重根),二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個________零點或二階零點.

(3)Δ<0,方程ax2+bx+c=0無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)________零點.

答案:(1)兩;(2)二重;(3)無
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1(a,b∈R).
(I)設(shè)集合P={1,2,4}和Q={-1,1,2},分別從集合P和Q中隨機(jī)取一個數(shù)作為函數(shù)f(x)中a和b的值,求函數(shù)y=f(x)有且只有一個零點的概率;
(II)設(shè)點(a,b)是隨機(jī)取自平面區(qū)域
2x+y-4≤0
x>0
y>0
內(nèi)的點,求函數(shù)y=f(x)在區(qū)間(-∞,1]上是減函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)x的一元二次函數(shù)f(x)=ax2-bx+1,設(shè)集合P={1,2,3}Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)a和b得到數(shù)對(a,b).
(1)列舉出所有的數(shù)對(a,b)并求函數(shù)y=f(x)有零點的概率;
(2)求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳二模)已知二次函數(shù)f(x)的最小值為-4,且關(guān)于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=
f(x)x
-4lnx
的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-bx+1,分別從集合P和Q中隨機(jī)取一個數(shù)a和b得到數(shù)列(a,b).
(1)若P={x|1≤x≤3,x∈Z},Q={x|-1≤x≤4,x∈Z},列舉出所有的數(shù)對(a,b),并求函數(shù)y=f(x)有零點的概率;
(2)若P={x|1≤x≤3,x∈R},Q={x|-1≤x≤4,x∈R},求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-bx+1,設(shè)集合P={1,2,3},Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個數(shù)作為a和b.
(1)求函數(shù)y=f(x)有零點的概率;
(2)求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊答案