【題目】如圖,已知△的內(nèi)角、、的對邊分別為、、,其中,且,延長線段到點,使得,.
(1)求證:是直角;
(2)求的值.
【答案】(1)證明見解析;(2).
【解析】
(1)根據(jù)正弦定理以及二倍角公式即可證明,
(2)如圖所示:過點C作CE⊥AC,根據(jù)平行線分線段成比例定理,設(shè)CE=x,則AB=5x,ADx,再根據(jù)勾股定理可得x的值,再由正弦定理,sinD,再根據(jù)同角的三角函數(shù)的關(guān)系即可求出答案.
1)由正弦定理可得sinBcosB=sinCcosC,
即sin2B=sin2C,
∵b≠c,
∴2B+2C=180°,
∴B+C=90°,
∴∠BAC=180°﹣90°=90°,
(2)如圖所示:過點C作CE⊥AC,
∵BC=4,BC=4CD,
∴CD=1,BD=5,
∵∠BAC=90°,
∴CE∥AB,
∴,
設(shè)CE=x,則AB=5x,
∵∠CAD=30°,
∴AE=2x,ACx,
∴,
∴DEx,
∵AB2+AC2=BC2,
∴25x2+3x2=16,
解得x,
在△CED中,∠CED=120°,CE,CD=1,
由正弦定理可得,
即sinD,
cosD,
∴tanD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={1,2,3,4}和集合B={1,2,3,…,n},其中n≥5,.從集合A中任取三個不同的元素,其中最小的元素用S表示;從集合B中任取三個不同的元素,其中最大的元素用T表示.記X=T-S.
(1)當n=5時,求隨機變量X的概率分布和數(shù)學(xué)期望;
(2)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln+ax﹣1(a≠0).
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)已知g(x)+xf(x)=﹣x,若函數(shù)g(x)有兩個極值點x1,x2(x1<x2),求證:g(x1)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是遞增數(shù)列,數(shù)列滿足:對任意,存在,使得,則稱是的“分隔數(shù)列”.
(1)設(shè),證明:數(shù)列是的分隔數(shù)列;
(2)設(shè)是的前n項和,,判斷數(shù)列是否是數(shù)列的分隔數(shù)列,并說明理由;
(3)設(shè)是的前n項和,若數(shù)列是的分隔數(shù)列,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右點分別為點在橢圓上,且
(1)求橢圓的方程;
(2)過點(1,0)作斜率為的直線交橢圓于M、N兩點,若求直線的方程;
(3)點P、Q為橢圓上的兩個動點,為坐標原點,若直線的斜率之積為求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓:,左頂點為,經(jīng)過點,過點作斜率為的直線交橢圓于點,交軸于點.
(1)求橢圓的方程;
(2)已知為的中點,,證明:對于任意的都有恒成立;
(3)若過點作直線的平行線交橢圓于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】統(tǒng)計學(xué)中將個數(shù)的和記作
(1)設(shè),求;
(2)是否存在互不相等的非負整數(shù),,使得成立,若存在,請寫出推理的過程;若不存在請證明;
(3)設(shè)是不同的正實數(shù),,對任意的,都有,判斷是否為一個等比數(shù)列,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在上的函數(shù),如果存在兩條平行直線與,使得對于任意,都有恒成立,那么稱函數(shù)是帶狀函數(shù),若,之間的最小距離存在,則稱為帶寬.
(1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;
(2)求證:函數(shù)()是帶狀函數(shù);
(3)求證:函數(shù)()為帶狀函數(shù)的充要條件是.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com