已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P(3
2
,4)
到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是
 
分析:由題設(shè)條件知2a=12,則a=6,可設(shè)橢圓的標(biāo)準(zhǔn)方程是:
x2
36
+
y2
b 2
=1
,將點(diǎn)P的坐標(biāo)代入進(jìn)而可得b,由此可知所求橢圓方程.
解答:解:由題設(shè)知,2a=12,
∴a=6,
可設(shè)橢圓的標(biāo)準(zhǔn)方程是:
x2
36
+
y2
b 2
=1

b2=32,
∴所求橢圓方程為
x2
36
+
y2
32
=1

故答案為:
x2
36
+
y2
32
=1.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)和應(yīng)用,解題時(shí)要注意公式的靈活運(yùn)用,特別是對(duì)于橢圓的焦點(diǎn)弦問題常需借助橢圓的定義來(lái)解決.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
(3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過點(diǎn)M(1,
2
5
5
)
,N(-2,
5
5
)
,若圓C的圓心與橢圓的右焦點(diǎn)重合,圓的半徑恰好等于橢圓的短半軸長(zhǎng),已知點(diǎn)A(x,y)為圓C上的一點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程;
(2)求
AC
AO
+2|
AC
-
AO
|
(O為坐標(biāo)原點(diǎn))的取值范圍;
(3)求x2+y2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,焦距為6
3
,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為12,則橢圓的方程為
x2
36
+
y2
9
=1
x2
36
+
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
2
2
,坐標(biāo)原點(diǎn)O到過右焦點(diǎn)F且斜率為1的直線的距離為
2
2

(1)求橢圓的方程;
(2)設(shè)過右焦點(diǎn)F且與坐標(biāo)軸不垂直的直線l交橢圓于P、Q兩點(diǎn),在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案