【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若,對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
【答案】(1)答案不唯一,見(jiàn)解析;(2)
【解析】
(1)先由題意得到定義域,對(duì)函數(shù)求導(dǎo),分別討論和兩種情況,即可得出結(jié)果;
(2)因?yàn)?/span>,由(1)得到函數(shù)在上單調(diào)遞增,不妨設(shè),則可化為,令,則為上的減函數(shù),對(duì)求導(dǎo),根據(jù)函數(shù)單調(diào)性,即可得出結(jié)果.
(1)∵依題意可知:函數(shù)的定義域?yàn)?/span>,
∴,
當(dāng)時(shí),在恒成立,所以在上單調(diào)遞增.
當(dāng)時(shí),由得;由得;
綜上可得當(dāng)時(shí),在上單調(diào)遞增;
當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增.
(2)因?yàn)?/span>,由(1)知,函數(shù)在上單調(diào)遞增,
不妨設(shè),則,
可化為,
設(shè),則,
所以為上的減函數(shù),
即在上恒成立,等價(jià)于在上恒成立,
設(shè),所以,
因,所以,所以函數(shù)在上是增函數(shù),
所以(當(dāng)且僅當(dāng)時(shí)等號(hào)成立)
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長(zhǎng)為,頂點(diǎn)在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點(diǎn)使得⊥平面,如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前項(xiàng)和為,并且,,數(shù)列滿足:,,記數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(2)求數(shù)列的通項(xiàng)公式及前項(xiàng)和公式;
(3)記集合,若的子集個(gè)數(shù)為16,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了配合今年上海迪斯尼游園工作,某單位設(shè)計(jì)了統(tǒng)計(jì)人數(shù)的數(shù)學(xué)模型:以表示第個(gè)時(shí)刻進(jìn)入園區(qū)的人數(shù);以表示第個(gè)時(shí)刻離開(kāi)園區(qū)的人數(shù).設(shè)定以分鐘為一個(gè)計(jì)算單位,上午點(diǎn)分作為第個(gè)計(jì)算人數(shù)單位,即;點(diǎn)分作為第個(gè)計(jì)算單位,即;依次類(lèi)推,把一天內(nèi)從上午點(diǎn)到晚上點(diǎn)分分成個(gè)計(jì)算單位(最后結(jié)果四舍五入,精確到整數(shù)).
(1)試計(jì)算當(dāng)天點(diǎn)至點(diǎn)這一小時(shí)內(nèi),進(jìn)入園區(qū)的游客人數(shù)、離開(kāi)園區(qū)的游客人數(shù)各為多少?
(2)假設(shè)當(dāng)日?qǐng)@區(qū)游客總?cè)藬?shù)達(dá)到或超過(guò)萬(wàn)時(shí),園區(qū)將采取限流措施.該單位借助該數(shù)學(xué)模型知曉當(dāng)天點(diǎn)(即)時(shí),園區(qū)總?cè)藬?shù)會(huì)達(dá)到最高,請(qǐng)問(wèn)當(dāng)日是否要采取限流措施?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),是坐標(biāo)軸上兩點(diǎn),動(dòng)點(diǎn)滿足直線與的斜率之積為(其中為常數(shù),且).記的軌跡為曲線.
(1)求的方程,并說(shuō)明是什么曲線;
(2)過(guò)點(diǎn)斜率為的直線與曲線交于點(diǎn),點(diǎn)在曲線上,且,若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線、與曲線分別相交于點(diǎn)、和、,我們將四邊形稱(chēng)為曲線的內(nèi)接四邊形.
(1)若直線和將單位圓分成長(zhǎng)度相等的四段弧,求的值;
(2)若直線,與圓分別交于點(diǎn)、和、,求證:四邊形為正方形;
(3)求證:橢圓的內(nèi)接正方形有且只有一個(gè),并求該內(nèi)接正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:()的焦距為,且右焦點(diǎn)F與短軸的兩個(gè)端點(diǎn)組成一個(gè)正三角形.若直線l與橢圓C交于、,且在橢圓C上存在點(diǎn)M,使得:(其中O為坐標(biāo)原點(diǎn)),則稱(chēng)直線l具有性質(zhì)H.
(1)求橢圓C的方程;
(2)若直線l垂直于x軸,且具有性質(zhì)H,求直線l的方程;
(3)求證:在橢圓C上不存在三個(gè)不同的點(diǎn)P、Q、R,使得直線、、都具有性質(zhì)H.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),(為正整數(shù))都在函數(shù)的圖象上.
(1)若數(shù)列是等差數(shù)列,證明:數(shù)列是等比數(shù)列;
(2)設(shè),過(guò)點(diǎn)的直線與兩坐標(biāo)軸所圍成的三角形面積為,試求最小的實(shí)數(shù),使對(duì)一切正整數(shù)恒成立;
(3)對(duì)(2)中的數(shù)列,對(duì)每個(gè)正整數(shù),在與之間插入個(gè)3,得到一個(gè)新的數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試探究2016是否是數(shù)列中的某一項(xiàng),寫(xiě)出你探究得到的結(jié)論并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】李克強(qiáng)總理在很多重大場(chǎng)合都提出“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”.某創(chuàng)客,白手起家,2015年一月初向銀行貸款十萬(wàn)元做創(chuàng)業(yè)資金,每月獲得的利潤(rùn)是該月初投入資金的.每月月底需要交納房租和所得稅共為該月全部金額(包括本金和利潤(rùn))的,每月的生活費(fèi)等開(kāi)支為3000元,余款全部投入創(chuàng)業(yè)再經(jīng)營(yíng).如此每月循環(huán)繼續(xù).
(1)問(wèn)到2015年年底(按照12個(gè)月計(jì)算),該創(chuàng)客有余款多少元?(結(jié)果保留至整數(shù)元)
(2)如果銀行貸款的年利率為,問(wèn)該創(chuàng)客一年(12個(gè)月)能否還清銀行貸款?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com