11.O為坐標(biāo)原點(diǎn),F(xiàn)為拋物線C:y2=4x的焦點(diǎn),過F的直線交C于A,B且$\overrightarrow{FA}$=2$\overrightarrow{BF}$,則△OAB的面積為( 。
A.4B.$\sqrt{2}$C.$\frac{3\sqrt{2}}{2}$D.2$\sqrt{2}$

分析 由題意設(shè)直線AB方程為x=my+1,代入拋物線方程,由$\overrightarrow{FA}$=2$\overrightarrow{BF}$,則y1=-2y2,求得m的值,由|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$,S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$.

解答 解:∵拋物線y2=4x,∴焦點(diǎn)F(1,0)
設(shè)直線AB方程為x=my+1,A(x1,y1),B(x2,y2),
將直線AB的方程與拋物線的方程聯(lián)立$\left\{\begin{array}{l}{x=my+1}\\{{y}^{2}=4x}\end{array}\right.$,消去x得y2-4my-4=0.
∴y1+y2=4m,y1y2=-4. ①
∵$\overrightarrow{FA}$=2$\overrightarrow{BF}$,
∴y1=-2y2,②
聯(lián)立①和②,消去y1,y2,
解得:m=$\frac{\sqrt{2}}{4}$,
|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=3$\sqrt{2}$.
∵S△OAB=$\frac{1}{2}$丨OF丨•|y1-y2|=$\frac{3\sqrt{2}}{2}$,
故選C.

點(diǎn)評(píng) 本題考查直線與拋物線的位置關(guān)系,弦長(zhǎng)公式及三角形的面積公式,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在矩形ABCD中,AB=2,BC=1,現(xiàn)將△ABC沿對(duì)角線AC折起,使點(diǎn)B到達(dá)點(diǎn)B′的位置,使平面AB′C與平面ACD垂直得到三棱錐B′-ACD,則三棱錐B′-ACD的外接球的表面積為5π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù));在以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C2的極坐標(biāo)方程為ρcos2θ=2sinθ;
(1)求曲線C1的極坐標(biāo)方程和曲線C2的直角坐標(biāo)方程;
(2)若射線l:y=kx(x≥0)與曲線C1,C2的交點(diǎn)分別為A,B(A,B異于原點(diǎn)),當(dāng)斜率$k∈[1,\sqrt{3})$時(shí),求|OA|•|OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=2x3+x,實(shí)數(shù)m滿足f(m2-2m)+f(m-6)<0,則m的取值范圍是(-2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),雙曲線C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的漸近線方程x±$\sqrt{3}$y=0,則C1與C2的離心率之積為$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.關(guān)于函數(shù)f (x)=4sin(2x+$\frac{π}{3}$),(x∈R)有下列命題:
①y=f(x)是以2π為最小正周期的周期函數(shù);
②y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱;
③y=f(x)的圖象關(guān)于直線x=-$\frac{5π}{12}$對(duì)稱;
其中正確的序號(hào)為③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知過拋物線方程y2=2px,過焦點(diǎn)F的直線l斜率為k(k>0)與拋物線交于A,B兩點(diǎn),滿足$\frac{1}{{|{\overrightarrow{AF}}|}}+\frac{1}{{|{\overrightarrow{FB}}|}}=1$,又$\overrightarrow{AF}=2\overrightarrow{FB}$,則直線l的方程為y=2$\sqrt{2}$(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,當(dāng)$x∈(0,\frac{π}{2})$時(shí),與函數(shù)$y={x^{-\frac{1}{3}}}$單調(diào)性相同的函數(shù)為( 。
A.y=cosxB.$y=\frac{1}{cosx}$C.y=tanxD.y=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.圓x2+y2=4與圓x2+y2-6x+8y-24=0的位置關(guān)系是(  )
A.相交B.相離C.內(nèi)切D.外切

查看答案和解析>>

同步練習(xí)冊(cè)答案