【題目】已知直線l與平面α相交但不垂直,m為空間內(nèi)一條直線,則下列結(jié)論一定不成立的是( )
A.m⊥l,mα
B.m⊥l,m∥α
C.m∥l,m∩α≠
D.m⊥l,m⊥α
【答案】D
【解析】解:設(shè)過l和l在平面α內(nèi)的射影的平面為β,則當(dāng)m⊥β時,有m⊥l,m∥α或mα,故A,B正確. 若m∥l,則m與平面α所成的夾角與l與平面α所成的夾角相等,即m與平面α斜交,故C正確.
若m⊥α,設(shè)l與m所成的角為θ,則0<θ< .即m與l不可能垂直,故D錯誤.
故選:D.
【考點(diǎn)精析】利用空間中直線與平面之間的位置關(guān)系對題目進(jìn)行判斷即可得到答案,需要熟知直線在平面內(nèi)—有無數(shù)個公共點(diǎn);直線與平面相交—有且只有一個公共點(diǎn);直線在平面平行—沒有公共點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AB⊥AD,AD∥BC,AD= BC=2,E在BC上,且BE= AB=1,側(cè)棱PA⊥平面ABCD.
(1)求證:平面PDE⊥平面PAC;
(2)若△PAB為等腰直角三角形. (i)求直線PE與平面PAC所成角的正弦值;
(ii)求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面內(nèi)將點(diǎn)A(2,1)繞原點(diǎn)按逆時針方向旋轉(zhuǎn) ,得到點(diǎn)B,則點(diǎn)B的坐標(biāo)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|ax﹣2|.
(Ⅰ)當(dāng)a=2時,解不等式f(x)>x+1;
(Ⅱ)若關(guān)于x的不等式f(x)+f(﹣x)< 有實(shí)數(shù)解,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=e ﹣ ,其中e為自然對數(shù)的底數(shù).
(1)設(shè)g(x)=(x+1)f′(x)(其中f′(x)為f(x)的導(dǎo)函數(shù)),判斷g(x)在(﹣1,+∞)上的單調(diào)性;
(2)若F(x)=ln(x+1)﹣af(x)+4無零點(diǎn),試確定正數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD= CD=1.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為 ,求線段PD的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備將1000萬元資金投入到市環(huán)保工程建設(shè)中,現(xiàn)有甲、乙兩個建設(shè)項(xiàng)目選擇,若投資甲項(xiàng)目一年后可獲得的利潤ξ1(萬元)的概率分布列如表所示:
ξ1 | 110 | 120 | 170 |
P | m | 0.4 | n |
且ξ1的期望E(ξ1)=120;若投資乙項(xiàng)目一年后可獲得的利潤ξ2(萬元)與該項(xiàng)目建設(shè)材料的成本有關(guān),在生產(chǎn)的過程中,公司將根據(jù)成本情況決定是否在第二和第三季度進(jìn)行產(chǎn)品的價格調(diào)整,兩次調(diào)整相互獨(dú)立且調(diào)整的概率分別為p(0<p<1)和1﹣p.若乙項(xiàng)目產(chǎn)品價格一年內(nèi)調(diào)整次數(shù)X(次數(shù))與ξ2的關(guān)系如表所示:
X | 0 | 1 | 2 |
ξ2 | 41.2 | 117.6 | 204.0 |
(Ⅰ)求m,n的值;
(Ⅱ)求ξ2的分布列;
(Ⅲ)若該公司投資乙項(xiàng)目一年后能獲得較多的利潤,求p的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究院的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價走勢如圖所示,為抑制房價過快上漲,政府從8月份采取宏觀調(diào)控措施,10月份開始房價得到很好的抑制.
(Ⅰ)地產(chǎn)數(shù)據(jù)研究院研究發(fā)現(xiàn),3月至7月的各月均價y(萬元/平方米)與月份x之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立y關(guān)于x的回歸方程(系數(shù)精確到0.01),政府若不調(diào)控,依次相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價;
(Ⅱ)地產(chǎn)數(shù)據(jù)研究院在2016年的12個月份中,隨機(jī)抽取三個月份的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個月份的所屬季度,記不同季度的個數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù): =25, =5.36, =0.64
回歸方程 中斜率和截距的最小二乘估計公式分別為:
= , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com