已知函數(shù), 
(1)若曲線在公共點(diǎn)處有相同的切線,求實(shí)數(shù)的值;
(2)當(dāng)時(shí),若曲線在公共點(diǎn)處有相同的切線,求證:點(diǎn)唯一;
(3)若,且曲線總存在公切線,求正實(shí)數(shù)的最小值

(1);(2)詳見解析;(3)正實(shí)數(shù)的最小值為1

解析試題分析:(1)求實(shí)數(shù)、的值,因?yàn)榍在公共點(diǎn)處有相同的切線,由導(dǎo)數(shù)的幾何意義可得,,解出即可;(2)當(dāng)時(shí),若曲線在公共點(diǎn)處有相同的切線,求證:點(diǎn)唯一,可設(shè),由題設(shè)得,,轉(zhuǎn)化為關(guān)于的方程只有一解,進(jìn)而構(gòu)造函數(shù),轉(zhuǎn)化為函數(shù)只有一個(gè)零點(diǎn),可利用導(dǎo)數(shù)即可證明;(3)設(shè)曲線在點(diǎn)處的切線方程為,則只需使該切線相切即可,也即方程組只有一解即可,所以消,問題轉(zhuǎn)化關(guān)于的方程總有解,分情況借助導(dǎo)數(shù)進(jìn)行討論即可求得值最小值
試題解析:(1), ∵曲線在公共點(diǎn)處有相同的切線∴ ,  解得,            3分
(2)設(shè),則由題設(shè)有       ①又在點(diǎn)有共同的切線
代入①得     5分
設(shè),則
上單調(diào)遞增,所以 =0最多只有個(gè)實(shí)根,
從而,結(jié)合(1)可知,滿足題設(shè)的點(diǎn)只能是            7分
(3)當(dāng)時(shí),,
曲線在點(diǎn)處的切線方程為,即 
,得  
∵ 曲線總存在公切線,∴ 關(guān)于的方程,
 總有解                    9分
,則,而,顯然不成立,所以     10分
從而,方程可化為  
,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義在R上的函數(shù)及二次函數(shù)滿足:。
(1)求的解析式;
(2)
(3)設(shè),討論方程的解的個(gè)數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=x2bxc(bc∈R),對(duì)任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當(dāng)x≥0時(shí),f(x)≤(xc)2;
(2)若對(duì)滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某鎮(zhèn)政府為了更好地服務(wù)于農(nóng)民,派調(diào)查組到某村考察.據(jù)了解,該村有100戶農(nóng)民,且都從事蔬菜種植,平均每戶的年收入為3萬(wàn)元.為了調(diào)整產(chǎn)業(yè)結(jié)構(gòu),該鎮(zhèn)政府決定動(dòng)員部分農(nóng)民從事蔬菜加工.據(jù)估計(jì),若能動(dòng)員x(x>0)戶農(nóng)民從事蔬菜加工,則剩下的繼續(xù)從事蔬菜種植的農(nóng)民平均每戶的年收入有望提高2x%,而從事蔬菜加工的農(nóng)民平均每戶的年收入將為3 (a>0)萬(wàn)元.
(1)在動(dòng)員x戶農(nóng)民從事蔬菜加工后,要使從事蔬菜種植的農(nóng)民的總年收入不低于動(dòng)員前從事蔬菜種植的農(nóng)民的總年收入,求x的取值范圍;
(2)在(1)的條件下,要使這100戶農(nóng)民中從事蔬菜加工的農(nóng)民的總年收入始終不高于從事蔬菜種植的農(nóng)民的總年收入,求a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

現(xiàn)有A,B兩個(gè)投資項(xiàng)目,投資兩項(xiàng)目所獲得利潤(rùn)分別是(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系依次是:其中平方根成正比,且當(dāng)為4(萬(wàn)元)時(shí)為1(萬(wàn)元),又成正比,當(dāng)為4(萬(wàn)元)時(shí)也是1(萬(wàn)元);某人甲有3萬(wàn)元資金投資.
(1)分別求出,的函數(shù)關(guān)系式;
(2)請(qǐng)幫甲設(shè)計(jì)一個(gè)合理的投資方案,使其獲利最大,并求出最大利潤(rùn)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某投資公司計(jì)劃投資A,B兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),A產(chǎn)品的利潤(rùn)y1與投資金額x的函數(shù)關(guān)系為y1=18-,B產(chǎn)品的利潤(rùn)y2與投資金額x的函數(shù)關(guān)系為y2(注:利潤(rùn)與投資金額單位:萬(wàn)元).
(1)該公司已有100萬(wàn)元資金,并全部投入A,B兩種產(chǎn)品中,其中x萬(wàn)元資金投入A產(chǎn)品,試把A,B兩種產(chǎn)品利潤(rùn)總和表示為x的函數(shù),并寫出定義域;
(2)在(1)的條件下,試問:怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)的圖象在點(diǎn)(e為自然對(duì)數(shù)的底數(shù))處取得極值-1.
(1)求實(shí)數(shù)的值;
(2)若不等式對(duì)任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)西部某省4A級(jí)風(fēng)景區(qū)內(nèi)住著一個(gè)少數(shù)民族村,該村投資了800萬(wàn)元修復(fù)和加強(qiáng)民俗文化基礎(chǔ)設(shè)施,據(jù)調(diào)查,修復(fù)好村民俗文化基礎(chǔ)設(shè)施后,任何一個(gè)月內(nèi)(每月按30天計(jì)算)每天的旅游人數(shù)與第x天近似地滿足(千人),且參觀民俗文化村的游客人均消費(fèi)近似地滿足(元).
(1)求該村的第x天的旅游收入(單位千元,1≤x≤30,)的函數(shù)關(guān)系;
(2)若以最低日收入的20%作為每一天的計(jì)量依據(jù),并以純收入的5%的稅率收回投資成本,試問該村在兩年內(nèi)能否收回全部投資成本?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)若,當(dāng)時(shí),求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí),,求上的反函數(shù);
(3)對(duì)于(2)中的,若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案