(2012•溫州一模)已知函數(shù)f(x)滿足f(x)=2f(
1
x
)
,當x∈[1,3]時,f(x)=lnx,若在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點,則實數(shù)a的取值范圍是( 。
分析:可以根據(jù)函數(shù)f(x)滿足f(x)=2f(
1
x
)
,求出x在[
1
3
,1]上的解析式,已知在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點,對g(x)進行求導(dǎo),利用導(dǎo)數(shù)研究其單調(diào)性,從而求出a的范圍;
解答:解:在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點,
①a>0若x∈[1,3]時,f(x)=lnx,可得g(x)=lnx-ax,(x>0)
g′(x)=
1
x
-a=
1-ax
x
,
若g′(x)<0,可得x>
1
a
,g(x)為減函數(shù),
若g′(x)>0,可得x<
1
a
,g(x)為增函數(shù),
此時f(x)必須在[1,3]上有兩個交點,
g(
1
a
)>0
g(3)≤0
g(1)≤0
,解得,
ln3
3
≤a<
1
e

設(shè)
1
3
<x<1,可得1<
1
x
<3,
f(x)=2f(
1
x
)
=2ln
1
x
,此時g(x)=-2lnx-ax,
g′(x)=-
2+ax
x
,
若g′(x)>0,可得x<-
1
a
<0,g(x)為增函數(shù)
若g′(x)<0,可得x>-
1
a
,g(x)為減函數(shù),
在[
1
3
,1]上有一個交點,則
g(-
2
a
)>0
g(
1
3
)≥0
g(1)≤0
,解得0<a≤6ln3②
綜上①②可得
ln3
3
≤a<
1
e
;
②若a<0,對于x∈[1,3]時,g(x)=lnx-ax>0,沒有零點,不滿足在區(qū)間[
1
3
,3]
內(nèi),函數(shù)g(x)=f(x)-ax,有三個不同的零點,
綜上:
ln3
3
≤a<
1
e

故選A;
點評:此題充分利用了分類討論的思想,是一道綜合題,難度比較大,需要排除a<0時的情況,注意解方程的計算量比較大,注意學(xué)會如何分類討論;
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)如圖,在矩形ABCD中,AB=8,BC=4,E,F(xiàn),G,H分別為四邊的中點,且都在坐標軸上,設(shè)
OP
OF
,
CQ
CF
(λ≠0).
(Ⅰ)求直線EP與GQ的交點M的軌跡Γ的方程;
(Ⅱ)過圓x2+y2=r2(0<r<2)上一點N作圓的切線與軌跡Γ交于S,T兩點,若
NS
NT
+r2=0
,試求出r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)設(shè)E為AB的中點,已知△ABC的面積為15,求CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)某高校進行自主招生面試時的程序如下:共設(shè)3道題,每道題答對給10分、答錯倒扣5分(每道題都必須回答,但相互不影響).設(shè)某學(xué)生對每道題答對的概率都為
23
,則該學(xué)生在面試時得分的期望值為
15
15
分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•溫州一模)若圓x2+y2-4x+2my+m+6=0與y軸的兩個交點A,B位于原點的同側(cè),則實數(shù)m的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案